AHP for Developing Land Valuation Model in Infrastructure Development

By Subash Ghimire

Presentation outline

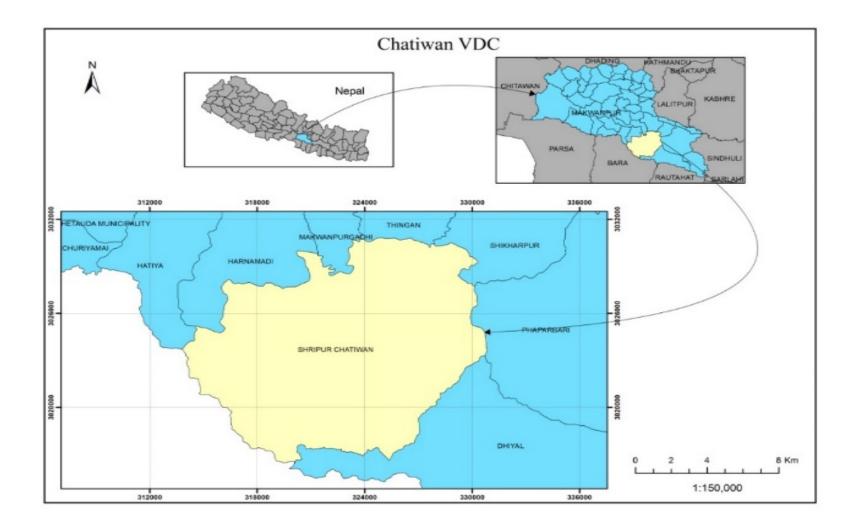
- Introduction
- Objective
- Research Methodology
- Study Area
- Data collection
- Data Analysis and Results
- Conclusion

Introduction

- Investment in infrastructure development for public purpose is very important for the development of any country.
- Inadequacy of compensation amount i.e low valuation is one of the main causes for opposition and delays by affected land owners in land acquisition (ORF, 2010).
- GIS technology is not applied in land valuation for land acquisition in infrastructure development.
- Therefore, land valuation and management process is always controversial for infrastructure development.

Introduction

- Therefore, GIS with Analytic Hierarchy Process is an effective tool for dealing with complex decision by setting priorities and makes the best decision.
- According to Saaty (2008), it is a theory of measurement through pairwise comparisons and depends on the judgments of experts to find out priority.
- Pair wise comparisons are based on forming judgments between two particular criterions rather than attempting to prioritize an entire list of criterions.
- Saaty (2008) has shown that weighting activities in multi-criteria decisionmaking can be effectively dealt using hierarchical structure and pairwise comparisons.


Objective

To develop the land valuation model by using GIS and AHP for infrastructure development

Research Methodology

- The quantitative and qualitative research methodologies are adopted for this study.
- The quantitative data were collected from household survey and qualitative data are collected from key informants interview, focus group discussion and participant observation.
- The respondents for primary data collection were 105 representing affected families, Fast Track officials, land administration professionals, civil society member and local leaders.

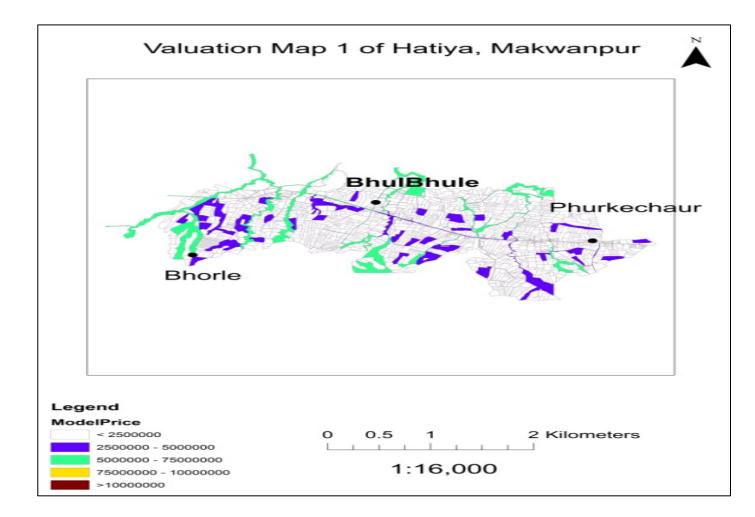
Study area

Respondents for primary data collection

R	espondents	Household survey	Department of Road/Fast Track official, (Project Director and Engineers)	Administration	VDC representatives/Civil society
N	lumbers	94	3	5	3

Limitations

- The study has used criteria such as road, built up, slope, forest, soil type and river.
- Further study can be carried out including the other criteria for land valuation in land acquisition for infrastructure development.


Data Analysis and Results

Criteria	Percentage	Level of importance
Road	100%	Very high important
Built up	72.38%	High important
Slope	66.67%	Very high important
Natural environments (River & forest)	49.52%	Medium important
Soil type	42.71%	Medium important
Social environments	97.14%	Notimportant

Calculating Eigenvector

Land valuation criteria	Road	Slope	Built up	Natural environment s	Soil type	5th root of product	Eigen vector
Road	1	1	3	5	5	2.371	0.360
Slope	1	1	3	5	5	2.371	0.360
Built up	0.333	0.333	1	3	3	0.998	0.160
Natural environments	0.2	0.2	0.333	1	1	0.419	0.060
Soil type	0.2	0.2	0.333	1	1	0.419	0.060
SUM	2.733	2.733	7.666	15	15	6.578	1.000
SUM*PV	0.983	0.983	0.830	1.157	1.157	5.110	

Valuation Map

Conclusion

- The AHP is applied for land valuation in infrastructure development.
- The land valuation model for infrastructure development has been developed considering various criteria.
- The land value is determined with spatial analysis and Analytical Hierarchy Process (AHP). A numerical weight or priority is derived for each element of the hierarchy.
- The decision makers systematically evaluates its various elements by comparing them to each other two at a time.
- Land value modeling is carried out to determine the value of each parcel by using dependent variable, which is a land market price and independent variable which is parcel quality level.
- Independent variable is a synthesis of weight value of each criterion that influence parcel quality level.

Thank you!