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This work compares four methods of the AHP priority vector estimation: EM, LS, LN, and RE:
• EM – Eigenproblem Method, proposed in (Saaty T.L., A scaling method for priorities in hierarchical structures, J. of

Mathematical Psychology, 15, 1977, 234–281; Saaty T.L., The Analytic Hierarchy Process. McGraw-Hill, New York,

1980);

• LS – Least Squares method, proposed in (Saaty T.L. and Vargas L.G., Comparison of eigenvalue, logarithmic least

squares and least squares methods in estimating ratios, Mathematical Modelling, 5, 1984, 309-324; Saaty T.L. and

Vargas L.G., Decision Making in Economic, Political, Social and Technological Environment with the Analytic

Hierarchy Process. RWS Publications, Pittsburgh, PA, 1994);

• LN – Logarithmic least squares, or multiplicative method (Saaty and Vargas, 1984, 1994; Lootsma F., Scale

sensitivity in the multiplicative AHP and SMART, J. of Multi-Criteria Decision Analysis, 2, 1993, 87-110; Lootsma F.,

Multi-Criteria Decision Analysis via Ratio and Difference Judgement. Kluwer Academic Publishers, Dordrecht,

1999);

• RE – Robust Estimation technique based on the ratio transformation to the shares of preferences (Lipovetsky S. and

Conklin W.M., Robust Estimation of Priorities in the AHP, European J. of Operational Research, 137, 2002, 110-122;

Lipovetsky S. and Conklin M., AHP Priorities and Markov-Chapman-Kolmogorov Steady-States Probabilities,

International J. of the Analytic Hierarchy Process, 7 (2), 2015, 349-363).



The work presents results of comparisons between these four methods of EM, LN, LS, 
and RE using several characteristics of closeness for the obtained solutions, including:
• pair correlations and cosines between vectors, 
• Saaty compatibility index (S-compatibility) described in (Saaty T. L., Theory and 

Applications of the Analytic Network Process: Decision Making with Benefits, 
Opportunities, Costs, and Risks. Pittsburgh, PA: RWS Publications, 2005; Saaty T.L. 
and Peniwati K., Group decision-making: Drawing out and reconciling differences. 
Pittsburgh, PA: RWS Publications, 2007);

• Garuti compatibility index (G-compatibility) described in (Garuti A. C., Measuring 
compatibility (closeness) in weighted environments, Proceedings of the International 
Symposium on the AHP, Vina del Mar, Chile, August 2– 6, 2007; Garuti A. C. and 
Salomon V.A.P., Compatibility indices between priority vectors, International J. of the 
Analytic Hierarchy Process, 4 (2), 2011, 152-160).

• For different sizes and consistency of the matrices of judgement used in the classical 
AHP literature, the priority vectors are calculated, their compatibility indices estimated, 
and characteristics of the matrix fit by the vectors are described. 

• In general, the explored methods are simple and convenient, and can significantly 
facilitate practical applications of the AHP for optimum solutions in various problems.



Priority vectors in several estimations. The AHP pairwise priority ratios matrix in general form can be written as follows:

𝐴 =

1 𝑎!" . . . 𝑎!#
𝑎"! 1 . . . 𝑎"#
. . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎#! 𝑎#" . . . 1

. (1)

It is a Saaty matrix of pairwise judgements among n items, elicited from an expert. Each element aij shows a quotient of preference of the i-th item over j-th

item in their comparison, so we have transposed-reciprocal elements 𝑎$% = 𝑎%$&!. A theoretical Saaty matrix of pair comparisons defines each ij-th element as a

ratio of the unknown priorities wi and wj :

𝑊 =
𝑤!/𝑤! 𝑤!/𝑤" ... 𝑤!/𝑤#

−−−− − −−−−−− − −−− −

𝑤#/𝑤! 𝑤#/𝑤" ... 𝑤#/𝑤#

= 𝑤 ∗ (
!

$
)′. (2)

The vector-column w consists of the elements w1, w2,…, wn, the vector-row (1/w)’ contains the reciprocal values 1/w1, 1/w2,…, 1/wn, and the right-hand side

of the relation (2) shows the outer product of these two vectors. From (2), the identical relation for the theoretical matrix and vector is: 𝑊𝑤 = 𝑛𝑤 .

For the obtained matrix (1) a similar relation can be presented as the eigenproblem:

𝐴𝛼 = 𝜆𝛼 , (3)

where the first eigenvector a for the maximum eigenvalue 𝜆 defines the vector of priorities. It is the eigenvector method EM of the classical AHP.



• Another known way is the Least Squares estimation for priority vector expressed via the following eigenproblem:

(AA’)a = l2a . (4)

The main vector a yields the priority vector in the LS approach.

• Multiplicative, or Logarithmic technique: priority vector as geometric means of the elements in rows of matrix (1):

𝛼! =
! ∏"#$

% 𝑎!" . (5)

• The obtained AHP priority vectors are also standardized by the total of the elements:

𝛼!%&'()*!+,- = 𝛼!/𝑠𝑢𝑚(𝛼!) . (6)

It is the priority vector estimation in the LN approach.



• Robust estimation (RE): a theoretical matrix of shares is:

Each element uij in (7) is defined as i-th priority in the sum of i-th and j-th priorities:

To estimate the priority vector using the matrix (7) we write identical equalities:

Then with notation (8) we present the system (9) as following:

or in the matrix form

    𝑈 = #
𝑤1/(𝑤1 + 𝑤1) 𝑤1/(𝑤1 + 𝑤2)	 ... 𝑤1/(𝑤1 + 𝑤𝑛)
− − −−− −−−−−−− −−−−

𝑤𝑛/(𝑤𝑛 + 𝑤1) 𝑤𝑛/(𝑤𝑛 + 𝑤2)			... 𝑤𝑛/(𝑤𝑛 + 𝑤𝑛)
/,            (7) 
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     !
(𝑢11 + ∑ 𝑢1𝑗𝑛

𝑗=1 )𝑤1 + 𝑢12𝑤2+. . . +𝑢1𝑛𝑤𝑛 = 𝑛𝑤1
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𝑢𝑛1𝑤1 + 𝑢𝑛2𝑤2+. . . +(𝑢𝑛𝑛 + ∑ 𝑢𝑛𝑗𝑛

𝑗=1 )𝑤𝑛 = 𝑛𝑤𝑛 
.                            (10)  

                      !𝑈 + 𝑑𝑖𝑎𝑔(𝑈𝑒)+𝑤 = 𝑛𝑤 



Again, In the matrix form the system (10) can be written as:

𝑈 + 𝑑𝑖𝑎𝑔 𝑈𝑒 𝑤 = 𝑛𝑤, (11)

where U is the matrix (7), e denotes a uniform vector of n-th order, and diag(Ue) is a diagonal matrix of totals in each row of matrix U.

In the AHP, the pair ratios wi/wj (2) are estimated by elicited values aij (1). Using aij in (8), we obtain the empirical estimates bij of the pairs’ shares:

𝑏"# =
$*+
%&$*+

. (12)

This transformation for matrix A (1) yields a pairwise share matrix B with the elements (12). These elements (12) are positive, less than one, and

have a property 𝑏"# + 𝑏#" = 1. The transposed elements bij and bji are skew-symmetrical off the diagonal bii=0.5, so 𝑏"# − 𝑏"" = −(𝑏#"−𝑏"").

• For empirical Saaty matrix A (1) we have the eigenproblem (3) in place of the theoretical relations (2). Similarly, using the empirical skew-

symmetric matrix B (12) in place of theoretical matrix U, we represent the system (11) as the eigenproblem:

𝐵 + 𝑑𝑖𝑎𝑔(𝐵𝑒) 𝛼 = 𝜆𝛼, (13)

where α as the main eigenvector. It is the RE - robust estimation of the priority vector.



• Measures of Consistency, Compatibility, and Precision

Due to the general methodology of AHP, the so-called consistency index (CI) equals

𝐶𝐼 = '()
)(%

(14)

where 𝜆 is the maximum eigenvalue of the matrix in the problem (3), and n is the matrix order. The so-called random consistency index (RI) is

a constant tabulated in the AHP for various n, and the consistency ratio (CR) equals:

𝐶𝑅 = *+
,+

. (15)

A value CR up to 10% is considered as indicating a small inconsistency in the matrix of pairwise comparisons (1), so such a matrix is

acceptable, otherwise, with CR>10%, the data could require a reviewing of the elicited judgements.

• For comparisons between the obtained solutions, several characteristics can be applied. Among those are the pairwise correlation between

the elements of two vectors, which can be reduced to the expression:
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. .*(.̅ 0*(10

∑*,-
. .*(.̅ / ∑*,-

. 0*(10 /
=
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. .*0*(

-
.
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. .*/(

-
. ∑*,-

. 0*/(
-
.

, (16)

where a bar above the variables denotes the mean values. Without the items 1/n for centering the measure (16) coincides with the cosine as
normalized projection of one vector onto another one.



• Another good measure of closeness between two vectors is the so-called Saaty compatibility index (S-compatibility) described in (Saaty, 2005;

Saaty and Peniwati, 2007; Garuti and Salomon, 2011). This index can be found as follows.

For two vectors x and y of an n-th order, build a matrix X with elements defined as quotients Xij=xi/xj of the components x, and a matrix Y with its

elements defined as quotients Yij=yi/yj of the components of y. Take the transposed matrix Y’ with the elements Y’ij=yj/yi and find the Hadamard

element-wise product of these two matrices X*Y’.

The S-index is defined as the normalized total of the elements of this matrix:

𝑆 = %
)/
∑",#3%) 𝑋"#𝑌"#4 =

%
)/
∑",#3%) .*

.+

0+
0*

. (17)

If two vectors coincide, this index equals 1. Within 10% of discrepancy, when 𝑆 ≤ 1.1, the vectors are considered as compatible; otherwise, when

𝑆 > 1.1, they are considered as incompatible.

• A further development of a compatibility measure in the compatibility index G was given in (Garuti, 2007; Garuti and Salomon, 2011):

𝐺 = ∑"3%) 5")(.*,0*)
5$.(.*,0*)

.*&0*
8

. (18)

Closer to 1 values, with G > 0.9, correspond to the compatible vectors; the values G < 0.9 correspond to incompatible vectors.



• To check precision of fit for the pairwise judgements by the priority estimate, we can use definition of the

elements ajk as quotients of preference between each pair of j-th and k-th items. With a vector-column of

priority estimate a, find its element-reciprocal vector-row (1/a)’ and build their outer product by the same

pattern as used in (2). With this outer product find quality of fit for the matrix A (1). The standard error (STE)

is a measure of the mean distance between the observed and estimated pairwise ratios:

𝑆𝑇𝐸 = B
C!
∑D,EFBC 𝑎DE −

G"
G#

H
. (19)

• Another measure of the precision for matrix approximation by vector is the Mean Absolute Error (MAE):

𝑀𝐴𝐸 = B
C!
∑D,EFBC 𝑎DE −

G"
G#

. (20)

The smaller values of fit correspond to better quality of a vector estimate.



• Another convenient measure is an analogue of the coefficient of multiple determination R2 widely used in regression analysis:

𝑅$ = 1 − %&&
'&&

= 1 −
∑',)*+
, )')*

-'
-)

.

∑',)*+
, )')*+

. . (21)

In the numerator is the residual sum of squares (RSS) of the estimated priority deviations from the elicited values, in the

denominator is the equivalent sum of squares (ESS) which assumes all the same preferences αj /αk ≡ 1. The coefficient (21) shows

how much the found priorities outperform the case of absence of preferences among the alternatives.

The better is approximation of the paired judgements by the estimated priorities – the closer is RSS to zero, so the coefficient of

determination R2 is bigger and closer to one. In absence of preferences αj/αk = 1, the numerator equals the denominator, and R2 =

0. For the exact fit ajk = αj/αk for all judgements, RSS = 0, and R2 = 1.

• The value R2 commonly belongs to the interval from 0 to 1, that makes it a very convenient measure for comparison of the

priority vectors obtained by different techniques. Only really poor estimates can produce the residual total RSS above the value of

the equivalent residuals ESS, and it would be indicated by the negative R2. The characteristic (21) corresponds to STE measure

(19) of squared deviations, but it is possible to build the other estimates, for example, using the MAE residuals (20) as well.



Numerical comparisons for priority estimations. Example 1: Consider the problem of “Choosing the best home”, 

described in (Saaty and Vargas, 1994; Saaty, 1996). The criteria are: 1 – size of house, 2 – location to bus, 3 –

neighborhood, 4 – age of house, 5 - yard space, 6 – modern facilities, 7 – general condition, 8 – financing. The matrix of 

pairwise comparisons A (1) for this problem is presented in Table 1a. The consistency index and consistency ratio are:    

𝐶𝐼 = ..00.12
3

= 0.238, 𝐶𝑅 = 4.562
$.7$

= 0.169. This value of CR indicates some mild inconsistency.

Table 1a. Example 1: Choosing the best home problem. Pairwise comparison matrix. 

item 1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1/5 
1/3 
1/7 
1/6 
1/6 
3 
4 

5 
1 
3 

1/5 
1/3 
1/3 
5 
7 

3 
1/3 
1 

1/6 
1/3 
1/4 
1/6 
5 

7 
5 
6 
1 
3 
4 
7 
8 

6 
3 
3 

1/3 
1 
2 
5 
6 

6 
3 
4 

1/4 
1/2 
1 
5 
6 

1/3 
1/5 
6 

1/7 
1/5 
1/5 
1 
2 

1/4 
1/7 
1/5 
1/8 
1/6 
1/6 
1/2 
1 

 



• Table 1b. Example 1: Choosing the best home problem. Priority vector estimations.

item EM LS LN RE 
1. size of house 0.173 0.199 0.175 0.150 
2. location to bus 0.054 0.100 0.063 0.054 
3. neighborhood 0.188 0.148 0.149 0.141 
4. age of house 0.018 0.017 0.019 0.022 
5. yard space 0.031 0.045 0.036 0.037 
6. modern facilities 0.036 0.065 0.042 0.041 
7. general condition 0.167 0.184 0.167 0.163 
8. financing 0.333 0.242 0.350 0.392 

Correlations     
EM 1 0.935 0.988 0.972 
LS 0.935 1 0.933 0.881 
LN 0.988 0.933 1 0.991 
RE 0.972 0.881 0.991 1 

S-compatibility     
EM 1 1.113 1.015 1.028 
LS 1.113 1 1.071 1.122 
LN 1.015 1.071 1 1.010 
RE 1.028 1.122 1.010 1 

G-compatibility     
EM 1 0.774 0.927 0.865 
LS 0.774 1 0.809 0.742 
LN 0.927 0.809 1 0.912 
RE 0.865 0.742 0.912 1 
       Precision   
STE 2.071 1.849 1.813 1.831 
MAE 1.079 1.083 0.958 0.934 
R2 0.423 0.540 0.558 0.549 

 



• For comparison between the four priority vectors the measures of Correlations, S- and 
G- compatibility are given in three matrices in Table 1b. 
• Judging by correlations, all the vectors are close enough by their structure, and LS is a 

bit further from the three others. 
• The S-compatibility proves that the EM, LN, and RE vectors are similar, within less 

than the required threshold of 10% of S-index deviation from one. 
• The more sensitive G-compatibility demonstrates that the pair of EM and LN vectors 

are close with G=0.927, and two vectors LN and RE are close with G=0.912, which are 
the values above the threshold 0.9 needed for the vectors to be seen as compatible.
• The last part at the bottom of Table 1b displays the precision for each vector solution.
• By the minimum standard error STE – the best model is LN, and by the mean absolute 

error MAE – the best model is RE. The values of MAE suggest also that an average 
deviation from the observed pair judgements evaluated by the obtained quotients from a 
priority vector is not more than one unit. 
• The coefficient of multiple determination R2 in the last row of Table 1b shows by its 

maximum values that the models LN and RE outperform the other two models, though 
all R2 values are not high, which indicates a difficulty in approximation of inconsistent 
judgements by a priority vector in any estimation.



• Example 2: the problem of “Distance from Philadelphia” is one of the first AHP problems described by Saaty (1977). The

remoteness of six cities from Philadelphia was estimated by the criterion: for each pair of cities, how many times farther the

more distant city is located from Philadelphia than the nearer one is? The elicited data is presented in Table 2a.

• Table 2a. Example 2: Distance from Philadelphia problem. Pairwise comparison matrix.

• The maximum eigenvalue in this example equals 𝜆 = 6.454. The consistency index and consistency ratio are:

• 𝐶𝐼 = ,../.*,
/

= 0.091, 𝐶𝑅 = 0.01+
+.$.

= 0.073 .

• The value CR=7.3% lesser than 10% permits to conclude that the data on pair judgements is sufficiently consistent.

Airport CAI TYO ORD SFO LGW YMX 
Cairo.CAI 1 0.333 8 3 3 7 
Tokyo.TYO 3 1 9 3 3 9 
Chicago.ORD 0.125 0.111 1 0.167 0.2 2 
SanFrancisco.SFO 0.333 0.333 6 1 0.333 6 
London.LGW 0.333 0.333 5 3 1 6 
Montreal.YMX 0.143 0.111 0.5 0.167 0.167 1 

 



• Table 2b. Example 2: Distance from Philadelphia problem. Priority vector estimations.

• Besides four estimations, here is the additional vector of the actual shares of distances known in this case. 
City EM LS LN RE actual 
1. Cairo 0.262 0.254 0.260 0.239 0.278 
2. Tokyo 0.397 0.305 0.399 0.447 0.361 
3. Chicago 0.033 0.047 0.035 0.034 0.032 
4. San Francisco 0.116 0.186 0.116 0.104 0.132 
5. London 0.164 0.184 0.163 0.147 0.177 
6. Montreal 0.027 0.024 0.027 0.029 0.019 

Correlations     
EM 1 0.943 1.000 0.990 0.991 
LS 0.943 1 0.941 0.898 0.973 
LN 1.000 0.941 1 0.991 0.990 
RE 0.990 0.898 0.991 1 0.962 
actual 0.991 0.973 0.990 0.962 1 

S-compatibility     
EM 1 1.064 1.000 1.009 1.024 
LS 1.064 1 1.064 1.106 1.045 
LN 1.000 1.064 1 1.008 1.027 
RE 1.009 1.106 1.008 1 1.060 
actual 1.024 1.045 1.027 1.060 1 

G-compatibility     
EM 1 0.821 0.993 0.900 0.914 
LS 0.821 1 0.820 0.753 0.854 
LN 0.993 0.820 1 0.905 0.908 
RE 0.900 0.753 0.905 1 0.823 
actual 0.914 0.854 0.908 0.823 1 

Precision     
STE 1.390 1.340 1.333 1.523 2.295 
MAE 0.696 0.862 0.686 0.790 1.012 
R2 0.794 0.809 0.810 0.753 0.438 

 



• We see that in general the vectors are similar and each one makes sense as 
proportionally scaled distances from Philadelphia to other cities in the USA, as 
well as to other countries and continents. 
• The pair correlations also show that the vectors are closely related to the actual 

distances, and the same is supported by S-compatibility index. 
• G-compatibility indicates that EM and LN vectors are compatible with the actual 

shares of distances. 
• The precision of the reproduction of the judgement matrix is high, especially by 

the LS and LN methods.
• Precision measured by STE, MAE, and R2 of the actual distances is the worst one 

within the other values in the last rows of Table 2b. 
• It means that the pair judgements on distances correspond rather to the priority 

vectors than to the actual distance shares. 
• Thus, in this data we do not need to use the actual data in considering 

compatibility among the estimated vectors.



• Example 3. The data for this problem is given in (Whitaker R., Validation examples of the Analytic Hierarchy Process and 
Analytic Network Process. Mathematical and Computer Modelling, 46, 2007, 840–859) where the area of five geometric 
figures were compared – see the matrix of pair judgements in Table 3a.

• Table 3a. Example 3: Geometric figures’ area problem. Pairwise comparison matrix.

• The maximum eigenvalue of this matrix is 𝜆 = 5.026. The random consistency for n=5 is RI=1.12, so consistency index

and consistency ratio equal the following values:

𝐶𝐼 = /.0$,*/
.

= 0.006, 𝐶𝑅 = 0.00,
+.+$

= 0.006 .

The CR=0.6% proves a very high level of consistency of this data. It can be explained by the used pairwise ratios where not

only the integer numbers but also the rational numbers (like 2.5 or 3.5) were permitted in the preference evaluation.

figure Circle Triangle Square Diamond Rectangle 
Circle 1 9 2.5 3 6 

Triangle 0.111 1 0.2 0.286 0.667 
Square 0.4 5 1 1.7 3 

Diamond 0.333 3.5 0.588 1 1.5 
Rectangle 0.167 1.5 0.333 0.667 1 

 



• Table 3b. Example 3: Geometric figures’ area problem. Priority vector estimations, with additional vector of the actual 
shares of the areas measured for these figures. All the vectors look practically coinciding, the pair correlations are very 
high, and both S- and G- indices prove compatibility among the estimates and with the actual observations. The 
precision measured by STE, MAE, and R2 characteristics demonstrates a high quality of the data fit by any of the 
estimated vectors of priority and by the actual values as well.

figures EM LS LN RE actual 
1. Circle 0.488 0.464 0.487 0.496 0.470 
2. Triangle 0.049 0.050 0.049 0.049 0.050 
3. Square 0.233 0.248 0.233 0.225 0.240 
4. Diamond 0.148 0.159 0.148 0.147 0.140 
5. Rectangle 0.082 0.078 0.082 0.083 0.090 

Correlations     
EM 1 0.998 0.999 0.999 0.999 
LS 0.998 1 0.998 0.995 0.998 
LN 0.999 0.998 1 0.999 0.999 
RE 0.999 0.995 0.999 1 0.998 
actual 0.999 0.998 0.999 0.998 1 

S-compatibility     
EM 1 1.003 1.000 1.000 1.003 
LS 1.003 1 1.003 1.004 1.007 
LN 1.000 1.003 1 1.000 1.003 
RE 1.000 1.004 1.000 1 1.003 
actual 1.003 1.007 1.003 1.003 1 

G-compatibility    
EM 1 0.948 0.999 0.982 0.955 
LS 0.948 1 0.948 0.931 0.953 
LN 0.999 0.948 1 0.982 0.956 
RE 0.982 0.931 0.982 1 0.940 
actual 0.955 0.953 0.956 0.940 1 

Precision     
STE 0.253 0.195 0.253 0.289 0.279 
MAE 0.145 0.110 0.145 0.162 0.165 
R2 0.987 0.992 0.987 0.983 0.985 

 



• Conclusions: The paper considered several methods of priority vector evaluation in the AHP: the classical eigenproblem method, least squares,

multiplicative or logarithmic approach, and a robust estimation based on transformation of the pairwise ratios to the shares of preferences. Together with

estimation of the vectors, validation of data consistency and comparison of vectors by correlations, S- and G- compatibility indices were completed.

• Numerical results for different data sizes and consistency indices demonstrate that all the methods produce compatible results for the consistent data,

otherwise a discrepancy between different methods of the priority estimation could be observed. Therefore, the data consistency should be always proved

before the vector evaluation.

• Another important point – the precision assessment of the data matrix approximation by the obtained priority vectors. Any regular statistical modeling

requires a verification of the produced results by some quality characteristics. For example, in regression analysis, such measures as the residual standard

error STE, mean absolute error MAE, and coefficient of multiple determination R2 are commonly employed. Applying them in the AHP environment can

enrich the evaluation and interpretation of the results on priority modeling.

• Example 1 with a low consistency, shows that R2 values are also not high which indicates a difficulty of approximation of inconsistent judgements by a

priority vector in any estimation; and by MAE values a mean deviation of the quotients of a priority vector’s elements from the observed pair judgements

could reach one. Example 2 with a good consistency, yields the precision of the reproduction of the judgement matrix by the found priority vectors is high

enough, although at the same time the actual distances occurred to show the worst vector for approximation of the elicited pairwise priority matrix. Example

3 with a perfect consistency yields all vectors of high compatibility and quality of the elicited judgements produced by each vector’s quotients of preference.



• Resuming, the considered methods of priority vector 
estimation and characteristics of their quality are convenient 
and helpful in practical applications of the AHP for solving 
various multiple-criteria decision making problems.

Thanks!


