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Summary:  A problem with a known composite answer is used to test six different AHP modes:  
distributive, ideal, referenced, linking pins, benchmark and supermatrix.  All except the ideal mode give 
the correct composite answer.  Upon deletion of an alternative, all except the distributive mode maintain 
the original ratios.  The appropriateness of the various modes is discussed.  
 

 
1.   Introduction 

 
At the 5th International Symposium of the Analytic Hierarchy Process in Kobe Japan, Thomas Saaty 
suggested to the author that the controversy regarding correct synthesis modes for the AHP should be 
tested with problems with known true values.  If the decomposed problem can be synthesized to produce 
the known composite value, then that fact is an indication that the synthesis is correct.  
 
The use of problems with known answers has been utilized before, particularly for the validation of the 
eigenvector routine.  For example, the eigenvector solution has been tested with the measuring distances 
from Philadelphia, intensities of lights and areas of objects (Saaty, 1977, Saaty & Vargas, 1991).  In 
essence, these situations are single criterion problems.  For multiple criteria situations, validation with the 
use of problems with known answers has received less attention.  Although Schoner and Wedley (1989) 
used a car purchase example and Wedley et al (1993, 1996) used multiple distances from Singapore, these 
applications have been criticized as being reducible to a single criterion (Forman, 1993; Hauser and 
Peniwati, 1996). Nevertheless, Vargas (1997) used a known answer problem to show that multiplicative 
composition gives rise to invalid answers.  Similarly, Saaty (1999) uses known purchase prices and 
remodeling costs of houses to show that multiplicative synthesis does not yield the correct composite ratio.   
 
This short treatise utilizes a problem with a known answer to test various methods of additive synthesis.  
The chosen modes to be tested are the distributive and ideal modes from conventional AHP, referenced 
AHP, linking pins AHP, benchmark measurement and the supermatrix.  The selected problem with known 
answers is Vargas' (1997) example with 3 boxes with 4 objects that were used to show that the 
multiplicative AHP produces invalid results.  Here, we use the same example in a similar manner to test 
various methods of deriving AHP composite priorities.  Like Vargas, we choose the ability of each method 
to replicate the true composite ratios as the measure of effectiveness.  Ratio preservation rather than rank 
preservation is chosen as the measure of effectiveness, because AHP produces ratio answers.  With perfect 
accuracy, inconsistency cannot be the reason why ratios are deflected from their true values.  
 

                                                           
1 Acknowledgement:  The author thanks the Natural Sciences and Engineering Research Council of 
Canada for financial support related to this project.   
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2.   The Problem 
 
Vargas's example with a known answer is shown in Table 1.  Three boxes each contain different 
components of 4 objects.  Each component has a different weight (lbs).  The objective is to determine the 
relative composite priorities for the true total weights of the objects when the components are assembled 
together.  These are shown in the last two columns.  In decision analysis terminology, the assembled 
objects to be measured are the alternatives and the boxes are the component criteria.  
 

Table 1 -- Three Boxes with Four Objects of Known Weights 
 

Box 1 Box 2 Box 3 Total True weights Ratio to Best
Object 1 1 6 10 17 0.243 0.850
Object 2 2 4 14 20 0.286 1.000
Object 3 3 8 6 17 0.243 0.850
Object 4 4 2 10 16 0.229 0.800
Total 10 20 40 70 1

 
 
2.1  The Distributive Mode 
 
The distributive mode normalizes alternative priorities to sum to one.  According to Axiom 3 of AHP, the 
criteria are assumed to be independent of the alternatives.  Here, where the objective is to measure the total 
weight of the objects, we follow Vargas (1997) in utilizing the relative weights of the boxes as the criteria 
weights.  As can be seen from Table 2, the composite priorities represent the true weights. 
 

Table 2 --  Distributive Mode with Independent Criteria Weights 

Criteria 10/70 = 20/70 = 40/70 =
priorities= 0.143 0.286 0.571 Composite Ratio to 

Box 1 Box 2 Box 3 Priorities Best
Object 1 0.1 0.3 0.25 0.243 0.850
Object 2 0.2 0.2 0.35 0.286 1.000
Object 3 0.3 0.4 0.15 0.243 0.850
Object 4 0.4 0.1 0.25 0.229 0.800

Total = 1.000
 
2.2   The Ideal Mode 
 
With the ideal mode, the best alternative under each criterion is normalized to unity.  As shown in Table 3, 
these items are Objects 4, 3 and 2 for Boxes 1, 2 and 3, respectively.  As for relative measurement, the  

 
Table 3 --  Ideal Mode with Independent Criteria Weights 

 

Criteria 10/70 = 20/70 = 40/70 =
priorities= 0.143 0.286 0.571 Composite Re- Ratio to 

Box 1 Box 2 Box 3 Priorities normalized Best
Object 1 0.250 0.750 0.714 0.658 0.243 0.838
Object 2 0.500 0.500 1.000 0.786 0.291 1.000
Object 3 0.750 1.000 0.429 0.638 0.236 0.812
Object 4 1.000 0.250 0.714 0.622 0.230 0.792

Total = 2.704 1
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criteria are assumed to be independent of the alternatives and derived in the same manner as relative 
measurement. Although the composite priorities no longer sum to unity, they can be easily renormalized to 
unity if they are in ratio form.  The sixth column of Table 3 shows such renormalization.  The last column 
shows the same ratios as a fraction of the best alternative (Object 2).   
 
The important point to note with the ideal mode is that the composite priorities, whether composite or 
renormalized, are not in the same ratio as was determined with relative measurement.  Here, we have the 
unusual situation where two different versions of conventional AHP give different composite answers.  
Which one is correct will be addressed below.  
 
2.3  Referenced AHP 
 
Referenced AHP (Schoner and Wedley, 1989) is the same as the distributive mode, except that the criteria 
weights represent either the average criterion possessed by the alternatives or the total criterion possessed 
by all the alternatives.  Except for that requirement, referenced AHP is the same as the distributive mode.  
Since the criteria weights used in the distributive mode example are determined by that principle, the 
referenced AHP results are the same as displayed in Table 2.   
 
2.4  The Linking Pins Mode 
 
Linking Pin AHP (Schoner et al, 1993) is similar to the ideal mode except for two differences:  (1) any 
alternative, not just the best alternative, can be chosen as the link that is normalized to take 100 % of the 
criterion weight and  (2) criteria weights are established in reference to the specific alternatives chosen as 
links.  In the linking pins procedure, the alternatives used as comparison references (linkages) when 
establishing criteria weights receive 100% of the criterion weights that they represent.  Other alternatives 
then receive their commensurate weights during the aggregation process via reference to the linkages. 
 

Table 4 --  Linking Pin Mode with Criteria Weights for the Link Elements 

Criteria 2/20 = 8/20 = 10/20 =
priorities= 0.1 0.4 0.5 Composite Re- Ratio to 

Box 1 Box 2 Box 3 Priorities normalized Best
Object 1 0.5 0.75 1 0.850 0.243 0.850
Object 2 1 0.5 1.4 1.000 0.286 1.000
Object 3 1.5 1 0.6 0.850 0.243 0.850
Object 4 2 0.25 1 0.800 0.229 0.800

3.500 1
 
In Table 4, Objects 2, 3 and 1 have been used as the linkage elements for criteria (Boxes) 1, 2, and 3 
respectively.  As well, the criteria priorities represent the importance of each of those linkages.  Since the 
sum of the linkages is 20 lbs., their correct criteria weights are 2/20, 8/20 and 10/20 respectively.  As can 
be seen from Table 4, the composite and renormalized weights are in correct ratio form.  
 
It should be noted that the ideal alternatives could have been used as linkages.  If so, the criteria priorities 
for those linkages are 4/26, 8/26 and 14/26, respectively.  The reader should verify that putting these 
priorities into Table 3 with the ideal items normalized to unity would yield the correct composite weights.  
 
2.5  The Benchmark Mode 
 
In the Benchmark mode of AHP (Wedley et al., 1996), a single representative alternative or a small 
number of alternatives becomes the benchmark by which other alternatives are compared.  If a small set of 
alternatives is used as the benchmark, then Referenced AHP becomes the means to determine their 
priorities.  If a single alternative is to be used as the benchmark, then linking pin AHP is used to generate 
its priority.  After this step is completed, each additional alternative is compared sequentially with the 
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benchmarks.  During composition to get each new alternative’s priority, the benchmarks are normalized to 
unity similar to what is done in the linking pin mode.   
 

Table 5 --  Benchmark Mode Objects 3 and 4 as Benchmarks 

Criteria 7/33 = 10/33 = 16/33 =
priorities 0.212 0.303 0.485 Composite Ratio to 

Box 1 Box 2 Box 3 Priorities Best
Object 3 0.429 0.800 0.375 0.515 1
Object 4 0.571 0.200 0.625 0.485 0.941

Total = 1.000
 

Table 5 shows the derived priorities when Objects 3 and 4 are used as benchmarks.  The criteria priorities 
represent the relative importance of those two objects and the resulting priorities maintain the true ratios 
between the objects (i.e. .485/515=.941 in Table 5 is the same as .800/.850=.941 in Table 1).   
 
Subsequent alternatives are compared to the two benchmark alternatives and take their global priorities 
from the benchmark values.  Table 6 demonstrates the inclusion of Objects 1 and 2 as referents to the 
benchmarks.  Notice that the alternative priorities are normalized so that the benchmarks continue to sum 
to one.  This can be accomplished by a proportional transformation of the alternative priorities of any of 
the previous Tables.  Notice too that the criteria priorities are unchanged with the insertion of the 
compared alternatives.  This means that the criteria priorities remain relevant for the benchmark 
alternatives but not the non-benchmark alternatives. Accordingly during synthesis, the composite priorities 
for the benchmarks attain their true ratios and the compared alternatives take their ratios in proportion to 
the benchmarks.  Renormalization of the composite priorities of Table 6 so that they sum to unity 
demonstrates that the benchmark mode achieves the true priorities shown in Table 1.  
 

Table 6 --  Benchmark Mode Objects 3 and 4 as Benchmarks 

Criteria 7/33 = 10/33 = 16/33 =
priorities 0.212 0.303 0.485 Composite Re- Ratio to 

Box 1 Box 2 Box 3 Priorities normalized Best
Benchmarks:
Object 3 0.429 0.800 0.375 0.515 0.243 0.401
Object 4 0.571 0.200 0.625 0.485 0.229 0.377
Compared Alternatives: Total = 1
Object 1 0.143 0.600 0.625 0.515 0.243 0.401
Object 2 0.286 0.400 0.875 0.606 0.286 0.471

Total = 1.121
 

2.6  The Supermatrix Mode 
 
The supermatrix mode is also known as a system with feedback.  It is the general case for AHP insofar as 
it can handle situations of dependence and independence of the criteria on the alternatives.  Local priorities 
are generated from the perspective of both the alternatives given the criteria and the criteria given the 
alternatives.   
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Table 7 --  The Supermatrix, Starting State 

1 Box 1 Box 2 Box 3 Object 1 Object 2 Object 3 Object 4
Box 1 0 0 0 0.059 0.100 0.176 0.250
Box 2 0 0 0 0.353 0.200 0.471 0.125
Box 3 0 0 0 0.588 0.700 0.353 0.625
Object 1 0.100 0.300 0.250 0 0 0 0
Object 2 0.200 0.200 0.350 0 0 0 0
Object 3 0.300 0.400 0.150 0 0 0 0
Object 4 0.400 0.100 0.250 0 0 0 0

 
In Table 7, the values in the first 3 columns represent the priorities for the Objects, given that they are in 
Box 1, 2 and 3 respectively.  The values in the last 4 columns represent the relative importance of each 
criterion (Boxes) from the perspective of a specific item (Object) in each box. These values are the starting 
point of the supermatrix process. 
 
Since each column of Table 7 is columnar stochastic, the matrix can be multiplied by itself to find the 
effect of interactions between criteria and alternatives.  When Table 7 is multiplied by itself a sufficient 
number of times, the values behave as a Markov process and stabilize to the values shown in Table 8.  
Notice that the stabilized priorities for alternatives are the true composite priorities and that the stabilized 
values for the criteria represent the relative weights of the boxes when all objects are included.  
 

Table 8 --  The Supermatrix, Stable State 
 

Box 1 Box 2 Box 3 Object 1 Object 2 Object 3 Object 4
Box 1 0 0 0 0.143 0.143 0.143 0.143
Box 2 0 0 0 0.286 0.286 0.286 0.286
Box 3 0 0 0 0.571 0.571 0.571 0.571
Object 1 0.243 0.243 0.243 0 0 0 0
Object 2 0.286 0.286 0.286 0 0 0 0
Object 3 0.243 0.243 0.243 0 0 0 0
Object 4 0.229 0.229 0.229 0 0 0 0

 
 
3.  The Effect of Additions or Deletions  
 
The main criticism of AHP has been the existence of rank reversal if alternatives are added or deleted.  
Some claim that rank reversal is natural and should be allowed, while others claim that rank reversals are 
symptomatic of a flaw in AHP procedures.  In this paper, we do not consider reversals of rank.  Instead, 
we concentrate on the ratio stability of priorities.  The reason for this is that AHP purports to be a method 
for ratio measurement.  Accordingly, the criterion of interest is the ability of AHP to produce correct 
ratios.  Our test is to see what happens to relative ratios when an item is added or deleted. 
 
Instead of adding an alternative, we have chosen to remove Object 1 from each box.  Object 1 was chosen 
for removal because it is not the ideal alternative for any criterion and because it has the same overall 
priority as Object 3.  With it removed, the remaining Objects have true priority weights that are  
 

Table 9 -- Three Boxes with Object 1 Removed 
 

Box 1 Box 2 Box 3 Total True weights Ratio to Best
Object 2 2 4 14 20 0.377 1.000
Object 3 3 8 6 17 0.321 0.850
Object 4 4 2 10 16 0.302 0.800
Total 9 14 30 53 1
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differentiated from one another.  This makes it easier to understand the dynamics of AHP. The correct 
weights and composite priorities with Object 1 removed are shown in Table 9.   
 
 
3.1  The Distributive Mode with Object 1 Removed 
 
The distributive mode answer, with Object 1 removed is presented in Table 10.  As is usual for this mode, 
we have left criteria priorities unchanged on the assumption that they are independent of the alternatives.  
As before, the rank of the priorities remains unchanged (Object 2 > Object 3 > Object 4).  The ratios, 
however, have not.  Whereas Object 3 was formerly .243/286 = .850 of Object 2 it is now.325/.380 = .856 
of Object 2.  Similarly, Object 4 is now .776 of Object 2 whereas it was formerly .800.  Accordingly, the 
distributive mode fails the ratio stability test.  
 

Table 10 --  Distributive Mode with Object 1 Removed 

Criteria 10/70 = 20/70 = 40/70 =
priorities= 0.143 0.286 0.571 Composite Ratio 

Box 1 Box 2 Box 3 Priorities to Best
Object 2 0.222 0.286 0.467 0.380 1.000
Object 3 0.333 0.571 0.200 0.325 0.856
Object 4 0.444 0.143 0.333 0.295 0.776

Total = 1.000
 
3.2  The Ideal Mode with Object 1 Removed 
 
Table 11 shows the ideal mode with Object 1 removed.  As compared to the previous ideal solution shown 
in Table 3, there is no change in the ratio of one priority to another.  Thus, the ideal mode maintains rank 
and ratio relationships provided the ideal does not change. Nevertheless, we should observe that the ideal 
mode again fails to reproduce the true priorities shown in Table 9  

 
Table 11 --  Ideal Mode with Object 1 Removed. 

Criteria 10/70 = 20/70 = 40/70 =
priorities= 0.143 0.286 0.571 Composite Re- Ratio 

Box 1 Box 2 Box 3 Priorities normalized to Best
Object 2 0.5 0.5 1 0.786 0.384 1.000
Object 3 0.75 1 0.429 0.638 0.312 0.812
Object 4 1 0.25 0.714 0.622 0.304 0.792

Total = 2.046 1
 
 
3.3  Referenced AHP with Object 1 Removed 
 
In Referenced AHP, criteria priorities are determined in reference to the alternatives in the choice set.  
Since Object 1 has been removed, these weights have changed.  The results with the new weights are 
shown in Table 12.  Notice that Referenced AHP reproduces the true composite weights with no change in 
rank or ratios.   
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Table 12 --  Referenced AHP with Object 1 Removed 

Criteria 9/53 14/53 30/53
priorities= 0.170 0.264 0.566 Composite Ratio 

Box 1 Box 2 Box 3 Priorities to Best
Object 2 0.222 0.286 0.467 0.377 1.000
Object 3 0.333 0.571 0.200 0.321 0.850
Object 4 0.444 0.143 0.333 0.302 0.800

Total = 1 2.65
 
3.4  The Linking Pins Mode with Object 1 Removed 
 
Table 13 shows the linking pin mode with Object 2 used as the link for each criterion.  Since Object 1 was 
a link in the previous example, it was necessary to choose a new link element for Criterion 3.  For 
illustrative purposes, we have chosen to show the same object as link for all three criteria.  As was done in 
Table 4, different objects could have been chosen as the link for each criterion.  Whatever links are used, 
the criteria weights reflect the weight of those links.  In Table 13, the criteria weights represent the 
importance of Object 2.   
 

Table 13 --  Linking Pin Mode with Object 1 Removed 

Criteria 2/20 = 4/20 = 14/20 =
priorities= 0.100 0.200 0.700 Composite Re- Ratio 

Box 1 Box 2 Box 3 Priorities normalized to Best
Object 2 1 1 1 1.000 0.377 1.000
Object 3 1.5 2 0.429 0.850 0.321 0.850
Object 4 2 0.5 0.714 0.800 0.302 0.800

2.650 1
 
As can be seen from Table 13, the linking pin mode maintains ratio relationships irrespective of the 
alternative or alternatives used as links.   
 
3.5  The Benchmark Mode with Object 1 Removed 
 
In the benchmark mode, each new alternative is compared to the composite result of the benchmark 
alternatives.  In other words, non-benchmark alternatives are independent of each other and are only 
dependent upon the benchmark alternatives.  So long as the benchmarks are not changed or removed, there 
will be no impact upon the addition or deletion of other alternatives.  
 
When Object 1 is removed from Table 6, the effect is the same as deleting that row.  The priorities of the 
benchmarks (Objects 3 and 4) and the other non-benchmark (Object 2) remain unchanged.  Hence, the 
benchmark mode maintains ratio relationships upon deletion or addition on non-benchmarks. 
 
3.6  The Supermatrix Mode with Object 1 Removed 
 
With Object 1 removed, the starting matrix for the Supermatrix mode is given in Table 14.  After matrix 
multiplication, the stable state is given in Table 15.  As can be seen, the supermatrix mode generates the 
correct composite weights shown in Table 9.   
 
Notice in the supermatrix that the starting criteria weights given Object 2 (Table 14) are the same as the 
linking pin weights in Table 13 (which also produces the correct composite weights).   Had Object 3 or 4 
been used as the common link in Table 13, the same correct composite weights could have been achieved 
with different linkages.  This implies that the starting criteria for the supermatrix correspond to linking pin 
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criteria with a common linkage.   The difference between the two methods is that linking pins establishes 
the weights through hierarchical composition whereas the supermatrix does it via matrix multiplication.  
 
Notice too that the stabilized criteria weights in Table 15 are the same as those used in Referenced AHP 
(Table 12).  This implies that the supermatrix’s stabilized weights for criteria represent the average or 
totality of the criterion possessed by the alternatives.  If the average or totality changes as the result of 
addition or deletion of alternatives, then the criteria weights must change (just as has been shown in the 
supermatrix). Thus, if the supermatrix represents the general case for AHP, it corresponds to Referenced 
AHP (Table 12) rather than the Distributive mode (Table 10) with assumed independent criteria.     
 

Table 14 --  The Supermatrix, Starting State, with Object 1 Removed 
 

Box 1 Box 2 Box 3 Object 2 Object 3 Object 4
Box 1 0 0 0 0.100 0.176 0.250
Box 2 0 0 0 0.200 0.471 0.125
Box 3 0 0 0 0.700 0.353 0.625
Object 2 0.222 0.286 0.467 0 0 0
Object 3 0.333 0.571 0.200 0 0 0
Object 4 0.444 0.143 0.333 0 0 0

 
Table 15 --  The Supermatrix, Stable State, with Object 1 Removed 

12 Box 1 Box 2 Box 3 Object 2 Object 3 Object 4
Box 1 0 0 0 0.170 0.170 0.170
Box 2 0 0 0 0.264 0.264 0.264
Box 3 0 0 0 0.566 0.566 0.566
Object 2 0.377 0.377 0.377 0 0 0
Object 3 0.321 0.321 0.321 0 0 0
Object 4 0.302 0.302 0.302 0 0 0

 
 

4.  Discussion 
 
Table 16 summarizes the results of this study.  For Vargas’s example (1997) with a known composite 
answer, referenced AHP, linking pin AHP, benchmark measurement, and the supermatrix method all 
produce correct composite priorities.  The distributive mode generated the true baseline priorities, but 
failed to maintain ratio stability when an alternative was removed.  The ideal mode did not generate the 
correct baseline priorities, but it did maintain the same, albeit incorrect, ratios.  
 
Why does the ideal mode fail to produce correct priorities, why does the distributive mode fail the ratio test 
upon deletion of an alternative, and why do the other methods produce correct priorities and ratios?  The 
answer can be found in the manner in which criteria priorities are generated. 
 

Table 16 - Summary of Results 

Distributive Ideal Referenced Linking Pin Benchmark Supermatrix

mode Mode AHP AHP AHP method

1.  Generates true priorities yes no yes yes yes yes

2.  Maintains ratio stability  no yes yes yes yes yes
Referenced AHP, linking pin AHP, benchmark measurement and the supermatrix method all utilize criteria 
weights that are dependent upon the alternatives in the choice set.  The distributive and ideal modes, on the 
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other hand, assume that the criteria priorities are independent of the alternatives.  With that assumption, 
there is no assurance that the initial criteria weights were derived in a manner that will produce true ratios.   
 
In the example used herein, we followed Vargas (1997) and used relative box weights as the criteria 
weights for the distributive mode.  Accordingly, the criteria weights were generated in reference to the 
alternatives.   As seen from Referenced AHP, those criteria weights are the correct ones for a procedure 
that normalizes the composite weights to sum to one.  Had we ignored the underlying alternatives and 
assumed the criteria were independent of the alternatives, it is likely that we would have produced a 
different set of weights and composite priorities that do not emulate the true priorities.  That is what 
happened when Object 1 was deleted.  We assumed the previous criteria weights were appropriate when 
they were not.  As seen from Referenced AHP, criteria weights must be reassessed whenever the choice set 
changes.   
 
The ideal mode, which also assumes criteria to be independent of alternatives, produced incorrect initial 
results because no attempt was made to derive correct criteria weights.  Instead, we simply accepted the 
same criteria weights as used for the distributive mode.  As shown by Schoner et al (1993) and the linking 
pin example, there is a necessary link between the normalization process and the type of questions used to 
derive criteria weights.  Since the ideal mode gives 100% of the criterion weight to the best alternative, the 
criteria weights should be derived with the best alternatives kept in mind when making criteria 
comparisons.  The failure to recognize this principle makes the ideal answer problematic and suspect, as 
has been shown in this study. 
 
The supermatrix method of AHP is the general case that can handle situations of both dependence and 
independence.  Accordingly, we should be able to look upon the supermatrix result to give the correct 
answer, which it does.  The fact that the distributive and ideal modes fail to reproduce the supermatrix 
results indicates that something is amiss with those methods.  It is proposed that criteria weights for the 
distributive and ideal modes should never be the same and should be derived with the referent alternatives 
in mind as is done with Referenced and Linking pin AHP.  If any alternatives are later added or deleted, 
then those criteria weights should be reassessed.  If the decision maker decides that the weights should not 
change, then we would have the situation where the criteria are independent of the alternatives.  If the 
reassessment results in changed criteria priorities, then we would have the situation of dependence.  The 
choice is left to the decision maker, but based upon more precise questions that highlight possible 
dependence.  The important point to make is that it is better to assume dependence and then find 
independence, than to assume independence and fail to find dependence.  
 
Are the defects in the distributive and ideal modes fatal to their use, particularly when they give different 
ratios for the same question?   For the ideal mode, we think so.  It is a method proposed to avoid rank 
reversals, which it does.  But without “linking-type” questions, it is not designed to elicit true composite 
priorities.  Thus, the avoidance of reversals is unimportant when the priorities are wrong.  Modification of 
the ideal mode to a linking pin procedure with the ideal alternatives as links would rectify the error.  With 
that change, the ideal mode would become the special case of linking pins where the ideal alternatives are 
the referent links. 
 
The distributive mode can be used unaltered if we are very sure that we have a situation of pure 
independence of criteria from alternatives.  Such a situation would exist for a decision situation where 
fixed resources are to be divided amongst a varying number of alternatives.  With the addition or deletion 
of alternatives, we would expect the fixed pie to be distributed differently to the changed choice set.   
 
Another situation where independence is thought to exist is when criteria priorities are specified before the 
choice set is known.  Alternatives are then evaluated according to the criteria as they are brought forth.  
While such situations exist, we would suggest that either the criteria weights be re-evaluated later when the 
alternatives become known, or a benchmark or linking pin procedure be used whereby the prior meaning 
of criteria weights is made more explicit.   
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5. Conclusion 
 
The six methods illustrated herein each use a different aggregation procedure.  What has been ignored or 
misunderstood by many decision makers and researchers is that criteria weights in different aggregation 
rules have different interpretations (Choo et al, 1999).  The failure to recognize this fact when eliciting the 
criteria weights can result in composite results that are either incorrect (the ideal mode) or incapable of 
maintaining ratio stability (distributive mode).  
 
Recognition of the need for congruence between criteria questions and the aggregation process is the point 
often overlooked in the rank reversal debate.  As well, the decision situation is another factor that is 
overlooked or confused.  By paying greater attention to the aggregation process and the decision situation, 
decision makers will begin to use the available decision tools in a more appropriate manner.  
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