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ABSTRACT 

 
Raising the paired comparison matrix to powers until column ratios stabilize is an efficient and common 
method for calculating the principle eigenvector. The disadvantage of this method is that higher order 
calculations are difficult to comprehend. This paper suggests a modification of the process that averages 
the higher order calculations in a manner that maintains the matrix in its original units. It also compares 
additive aggregation to geometric aggregation and hierarchic composition.  
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1. Introduction 
 

The basic premise of AHP/ANP is that a ratio scale can be derived from the paired comparisons of n 
objects that possess a ratio property. Each comparison ai/j is between the magnitudes of two objects (i, j) 
with the smaller magnitude (j) as the unit of comparison. A total of n(n-1)/2 such comparisons are 
performed, with the reciprocal value 1/a i/j=aj/i  representing a fundamental value when the object with the 
larger magnitude is used as the unit of measure. Along with diagonal values a i/i=1, these estimates are 
placed in an nxn matrix in which each column has the same unit of measure. Although each comparison 
value is an estimated ratio scale for two objects, the overreaching objective is to derive a scale that 
includes all n objects. A common procedure in AHP/ANP is to perform continued matrix multiplication 
until the ratios between objects of any column stabilize. The stabilized ratios coincide with the right 
eigenvector that is used as the derived measurement scale.  
 
As will be shown, the row x column process of matrix multiplication is a type of arithmetic aggregation 
of indirect estimates of cell values. That aggregation can be re-expressed as an average that maintains the 
unit of the original matrix, thereby avoiding difficult interpretations of higher order calculations. The next 
sections outline the nature of the comparison matrix, matrix multiplication, and traits of the convergence 
process. The paper concludes by discussing anomalies with other procedures used in AHP.  
 
 

2. The Nature of a Comparison Matrix 

 
Figure 1 illustrates the layout and example of a comparison matrix. In order to emphasize that the cell 
entries are ratio estimates of the value of object i given object j as the unit of measure, we have used ai/j 

notation rather than the usual aij matrix specification. Notice from the layout of the matrix that all values 
in each column have a common unit. Therefore, each column in itself is a ratio scale of the n objects 
based upon a different unit of measure. If the DM is perfectly consistent when making the comparisons, 
then we could take any column as our measurement scale that spans the n objects. Perfect consistency 
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occurs when ai/j*aj/k=ai/k for all i, j, k = 1…n.  In the example shown, the matrix is not consistent. Some 
inconsistency is usual since the DM is seldom able to make all comparisons with perfect accuracy.  

 
 

Figure 1 Layout and example of a reciprocal pairwise comparison matrix 

 
There are three general ways to interpret comparison estimates. The first and more general interpretation 
is that they estimate the fixed absolute value between two objects. Even if both objects are measured in 
terms of some other unit, the ratio between them should always be the same. The second interpretation is 
that each comparison itself is a little scale that measures the property under consideration. For example, 
a1/4 is a scale where D=1 (the unit) and A=3 while  the reciprocal, a4/1, has A=1(the unit) and D=1/3. The 
third and more subtle interpretation is that each comparison, like exchange rates between currencies, is 
the conversion factor between one unit of measure and another. For example, if we have object C 
measured in terms of A (a3/1) and we wish to measure C in terms of object D (a3/4), then the conversion 
factor between A and D (a1/4) could be used to achieve the transformation (a3/1*a1/4=a3/4).   
 
Because the DM is not capable of being perfectly accurate, it generally occurs that ai/j*aj/k~ai/k. In other 
words, the DM’s direct estimate (ai/k) differs from an indirect estimate (a i/j*aj/k) calculated by converting 
from the unit of object j to the unit of object k. In matrix multiplication, several different routes are 
available for calculating these indirect estimates. 
 
 
2. Achieving Ratio Stability via Matrix Multiplication.  

 
Let T be an estimated pairwise comparison matrix. Using matrix multiplication, ratio priorities are 
derived from the comparison matrix T by the following limit: 

          eTe

eT
Lim

kT

k

k 

,                                                                                                                                            (1)  

 
where e

T
=[1,...,1] is the unity n-vector (Saaty, 2003). The unity vectors determine the row sum in the 

numerator and the sum of those row sums in the denominator.  This process expresses priorities as a unit-
sum vector.  
 
In addition to the above process, Saaty (2008) points out that the eigenvector solution is independent of 
whether all the elements of T are multiplied by the same constant or not. Thus, (1) can be re-written as: 
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                 (2) 

where b is a positive scalar that proportionally transforms all cell values to a different unit of measure. 
Alternatively, the same effect is achieved if (1) is re-written   

      
BeTe

BeT
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k
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                                                                                                                          (3) 

A B C D

a1/1 a1/2 a1/3 a1/4 A 1 2 2.8 3

a2/1 a2/2 a2/3 a2/4 B 0.5 1 1.2 1.8

a3/1 a3/2 a3/3 a3/4 C 0.357 0.833 1 1.4

a4/1 a4/2 a4/3 a4/4 D 0.333 0.556 0.714 1

T
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where B is a diagonal matrix with an arbitrary constant (b>0) on the diagonal that proportionally 
transforms all column values to a different unit of measure.   
 
To comprehend what is happening when T is raised to higher powers, it is worthwhile to look at the 
notation and the results for calculating T

2
.  First, consider just the comparison value for a1/3 of T that has a 

direct comparison value of 2.8.  Recall that 2.8 and other values in the third column are expressed in the 
unit of object C. Thus, the magnitude of A is estimated to be 2.8 times larger than the magnitude of C.  
Getting cell a1/3 of T

2
 involves multiplying row 1 times column 3 and summing the results. 

 

a1/1*a1/3+ a1/2*a2/3+ a1/3*a3/3+ a1/4*a4/3    =   1*2.8 + 2*1.2 + 2.8*1 + 3*0.714                  (4)  

          =     2.8 + 2.4 + 2.8 + 2.14  = 10.14  

Notice that the synthesis is a summation of two direct estimates (a1/1*a1/3, a1/3*a3/3) and two indirect 
estimates (a1/2*a2/3, a1/4*a4/3). Each component of the summation is a conversion from the n different units 
of each row (a1/1, a1/2, a1/3, a1/4) to the unit of the target cell (a1/3).  Accordingly, matrix multiplication to get 
T

2
 is the component-wise summation of n estimates of a i/j from n source units of measure.   

 
The next matrix multiplication to get a1/3 of T

3 
involves 4 estimates from 4 source units that already 

contain 4 estimates themselves. Thus a1/3 in T
2
*T=T

3
 becomes a1/3= (a1/1*a1/3+ a1/2*a2/3+ a1/3*a3/3+ 

a1/4*a4/3) where the bold faced items are already composed of 4 estimates. In total, T
3 

has n
k-1

=4
2 
estimates 

for each cell. At higher powers the number of cell estimates increase exponentially -- 4 for T
2
, 16 for T

3
, 

64 for T
4
, etc.  

 
Figure 2 presents the results of matrix multiplication at T

2
 and T

3
. Notice that cell a1/3 in T

2
 has the 

calculated value 10.14. This value is certainly not an estimate of the comparison value of objects A/C, 
because the A/C estimates shown in (4) are closer to the direct estimate, 2.8.  From (4), however, we  can  
see  that the  a1/3  value in T

2
 is a summation or concatenation of 4 estimates of A/C. Accordingly, the row 

items in T
2
 should be interpreted as an abstract object that is 4 times as large as the original row item (i.e. 

a1/3 in T
2
 is 4A/1C). This fact is illustrated in Figure 2 by showing the row object as 4 times the magnitude 

of the previous matrix object.  Thus, by T
3
, the unit of measure in each columnar scale is still one unit of 

the column object, but the abstract concatenated object in each row is 16 times larger than the unit, 64 
times larger at T

4
, etc. The number of summed estimates for each step is n

k-1
. 

 

Figure 2 Comparison matrix values at T, T
2
 and T

3
. 

 
If we use (2) or (3) with b=1/(n

k-1
), then we re-scale the columns of T

k
 back to T

1 
conditions with average 

values in the cells. This is illustrated in Figure 3. Notice in Figure 3 that each subsequent multiplication 
deflects cell values towards stable averages. Even by the third iteration, the ratio of object A to B in all 
columns of 1/16T

3
 is 1.99. As can be seen from Figure 3, the advantage of using T

k
/n

k-1
 is that successive 

matrix multiplications can be related back to the original units and magnitudes of T. In this format, cell 
values can be observed between iterations to monitor the progression to stability.   

A B C D A B C D A B C D

A 1 2 2.8 3 4A 4.000 8.000 10.143 13.520 16A 16.129 31.963 40.600 54.120

B 0.50 1 1.2 1.8 4B 2.029 4.000 5.086 6.780 16B 8.105 16.062 20.409 27.186

C 0.357 0.833 1 1.4 4C 1.598 3.159 4.000 5.371 16C 6.396 12.671 16.101 21.450

D 0.333 0.556 0.714 1 4D 1.200 2.373 3.029 4.000 16D 4.801 9.518 12.092 16.110

T T2 T3
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Figure 3 Comparison matrix values at T, 1/4T
2
 and 1/16T

3 

 
Using (1), (2) or (3), stability eventually evolves for the ratio of objects in any of the columns. Invariance 
of the ratio of any two objects is a property of ratio scales (Michell, 1997). When such invariance 
eventually occurs, we can conclude that sufficient conversion has taken place to average out any 
inaccuracy in the comparisons. The final stabilized weights normalized to unity are: 0.4552, 0.2287, 
0.1805, and 0.1355 for A, B, C and D respectively. We can look upon these eigenvector values as the 
average of many estimates of column values.  
 
 

3. Some Interesting Traits of Matrix Convergence.  
 
In passing, we should recognize some traits of the additive process used in matrix multiplication. The first 
is that additive synthesis destroys the reciprocal property that was inherent in the original comparison 
matrix. Notice that all ai/i>1 in T

2
 and T

3
.  This occurs because we are no longer comparing one unit of 

each object.  For example, in T
2
, a1/2=4A/1B and the a2/1=4B/1A. Even if we multiplied all T by 1/n to 

express the values back in terms of T
1
, the reciprocal relationship would not be maintained.  Such non-

reciprocity is common (e.g. cross exchange rates for currencies or actual estimates for reciprocal values) 
and can be easily handled in matrix multiplication. 
 
A second trait of the additive process of matrix multiplication is that any rescaling via B in (3) must have 
all diagonal values equivalent in order to produce the same eigenvector solution as (1). For example, we 
could set  




n

1=i i/ja

1

Te

1
b j

                                                                                                        (5) 

in B to normalize each column to sum to 1. This would make it columnar stochastic like an ANP 
supermatrix, but the eigenvector solution would be different.  The stabilized solution when T is converted 
to a stochastic matrix is 0.4566, 0.2280, 0.1756 and 0.1397 for A, B, C and D respectively.  This different 
solution suggests that that additive synthesis does not have the same homogeneity property that is 
associated with geometric aggregation. (Saaty & Sodenkamp, 2009).  
 
 

 4. Discussion 

 
Raising the comparison matrix to powers to achieve convergence is essentially a process of component-
wise addition of n

k-1
 matrices with an estimate ai/j in each cell.  For T

2
, this process is illustrated in Figure 

4.  For k>2, the process would just be adding more of these estimate matrices.  
 

  
 

A B C D A B C D A B C D

A 1 2 2.8 3 A 1.000 2.000 2.536 3.380 A 1.008 1.998 2.538 3.383

B 0.500 1 1.2 1.8 B 0.507 1.000 1.271 1.695 B 0.507 1.004 1.276 1.699

C 0.357 0.833 1 1.4 C 0.399 0.790 1.000 1.343 C 0.400 0.792 1.006 1.341

D 0.333 0.556 0.714 1 D 0.300 0.593 0.757 1.000 D 0.300 0.595 0.756 1.007

T 1/16T3
1/4T2
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Figure 4 Component-wise addition of 4 estimates to get T
2
. 

 

When viewed from this perspective of aggregating n
k-1 matrices, determining T

k
 is the same as the 

problem of aggregating matrices of k individuals into a group matrix. For group decision making, 
however, the accepted AHP method for aggregating individual judgments is not an additive one.  Instead, 
the geometric mean or weighted geometric mean is universally observed as the correct method (Aczel & 

Saaty, 1983; Aczel & Alsina, 1986; Forman & Peniwati, 1998; Saaty & Peniwati, 2008).  The 
geometric mean has desirable properties such as reciprocal relationships, unanimity and homogeneity 
conditions (Saaty & Sodenkamp, 2009).  
 
It is obvious that there is an anomaly between group and eigenvector routines.  Although both processes 
aggregate matrices, geometric aggregation is used for the group matrix, but additive aggregation is for the 
converged matrix.  This is in spite of the fact that both processes aggregate cell estimates.  It also leads to 
the irony that the group matrix from geometric aggregation is then subjected to additive aggregation to get 
the eigenvector. 
 
Another anomaly is associated with the principle of hierarchic composition.  Saaty (2003) points out that 
the principal eigenvector is the only priority vector that remains invariant under the principle of hierarchic 
composition. As displayed graphically in Figure 5, the hierarchical problem is to determine weights w i, 
i=1, 2...4 that correctly represent the relative dominance of the four objects (i.e. the unit for each cluster).  
As Saaty observes, only the eigenvector for relative weights produces the same relative weights for 
priorities (pi).  
 

 
 

Figure 5 Hierarchic and Matrix representations for deriving prior ities 

In hierarchic structuring, however, it is common practice to normalize local cluster values to unit-sum 
vectors. As pointed out above, the eigenvector solution to the stochastic matrix is different. This is not too 
surprising when we consider that the normalization to unity is equivalent to changing the unit of clusters 
to a common object (an abstract totality object that is the sum of the 4 objects). Since the unit of each 
column is the same (a totality), we should use equal weights (not eigenvector weights) when the 
normalized columns sum to one. This method of using a simple average with a totality unit is called 

A B C D A B C D A B C D A B C D

A a1/1*a1/1 a1/1*a1/2 a1/1*a1/3 a1/1*a1/4 A a1/2*a2/1 a1/2*a2/2 a1/2*a2/3 a1/2*a2/4 A a1/3*a3/1 a1/3*a3/2 a1/3*a3/3 a1/3*a3/4 A a1/4*a4/1 a1/4*a4/2 a1/4*a4/3 a1/4*a4/4

B a2/1*a1/1 a2/1*a1/2 a2/1*a1/3 a2/1*a1/4 ₊ B a2/2*a2/1 a2/2*a2/2 a2/2*a2/3 a2/2*a2/4 ₊ B a2/3*a3/1 a2/3*a3/2 a2/3*a3/3 a2/3*a3/4 ₊ B a2/4*a4/1 a2/4*a4/2 a2/4*a4/3 a2/4*a4/4
= T2

C a3/1*a1/1 a3/1*a1/2 a3/1*a1/3 a3/1*a1/4 C a3/2*a2/1 a3/2*a2/2 a3/2*a2/3 a3/2*a2/4 C a3/3*a3/1 a3/3*a3/2 a3/3*a3/3 a3/3*a3/4 C a3/4*a4/1 a3/4*a4/2 a3/4*a4/3 a3/4*a4/4

D a4/1*a1/1 a4/1*a1/2 a4/1*a1/3 a4/1*a1/4 D a4/2*a2/1 a4/2*a2/2 a4/2*a2/3 a4/2*a2/4 D a4/3*a3/1 a4/3*a3/2 a4/3*a3/3 a4/3*a3/4 D a4/4*a4/1 a4/4*a4/2 a4/4*a4/3 a4/4*a4/4

Goal = Derive Priorities

Matrix Representation for calculations

w1 w2 w3 w4

A B C D A B C D Eigenvector

1 2 2.8 3 A 1 2 2.8 3 w1 p1 0.4552

0.5 1 1.2 1.8 B 0.50 1 1.2 1.8
x

w2 =
p2 0.2287

0.357 0.833 1 1.4 C 0.357 0.833 1 1.4 w3 p3 0.1805

0.333 0.556 0.714 1 D 0.333 0.556 0.714 1 w4 p4 0.1355
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Normalized Column Means (NCM).  It has been reported to be efficient and accurate (Bajwa et al, 2008, 
Zahedi, 1986). Why NCM should be an inferior method of hierarchical composition is not clear. Nor is it 
clear why geometric aggregation is inferior when it is used in group processes. 
 
 

5.  Conclusion 

 
Matrix convergence of cell values can be interpreted as the simple average of many conversion estimates.  
At stability, the cell values in every column have the same ratio to each other.  Invariance of ratios 
irrespective of the unit of measure is a trait of ratio scales.  The eigenvector routine achieves this trait.  
The eigenvector routine, however, is not the only method that generates ratio stability. The geometric 
mean that is used in group aggregation has many desirable properties.  And, the simple mean of unit sum 
columns (NCM) has proved to be quite accurate.  Which aggregation method has the greatest efficacy is a 
topic that requires more investigation.  
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