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Abstract: A new method of estimating the weight vector in AHP is proposed. 
Since this method assumes an entropy optimization model as the background model for 
AHP's pairwise comparison, the AHP with this weight vector estimation is called 
entropy-based AFIP or entropy AHP. An interpretation for this entropy-based background 
model is presented and on the basis of this entropy-based background model, a method of 
estimating the weight vector is presented. Finally, estimated results of the weight vector 
by this entropy AHP are compared with those by conventional geometric-mean AHP and 
eigenvector AHP. 

I. Introduction 
A new method of estimating the weight vector w in AHP is proposed. Since this method assumes an 

entropy optimization model as the background model for AHP's pairwise comparison, the AHP with 

this weight vector estimation is called entropy-based AHP or entropy AHP. In Sec. 2, a background 

model with entropy distance minimization is proposed for the pairwise comparison. In Sec. 3, an 

interpretation for this entropy-based background model is presented. In Sec. 4, on the basis of this 

entropy-based background model, a method of estimating the weight vector w is presented. In Sec. 5. 

estimated results of the weight vector w by this entropy AHP are compared with those by conventional 

geometric-mean AHP and eigenvector AHP. 

2. Background model with entropy distance minimization for AHP's pairwise comparison 

Consider an entropy distance minimization problem EDMP ((1)--(4)). 

[EDMP] 

Objective function : Y)= EE xu (1,n(xy Iyy )— 1) 

Decision variable: x = 
(I) 

(2) 
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cx 

Given variable: Y= fyij 1p = {pk1 

Constraint: E xki - Pk (k 

The optimality condition for EDMP is derived with the use of Lagragean function L(X, 

Optimality condition: 
a = o (i = n and j=1,...,n) 

/iv, ,0 = Dec 0 4_ E 2.,( E xk) - E xm - Pk] 
It ll 

The optimality condition (5) is evaluated as below. 
all 

=14x; ly;)+1+ 2,-2 —1=0 
I 

Therefore, x11 is expressed as below. 
xii = yti expe A + 

Let w. = e-21, then Eq. (9) is obtained. 
w. 

xi/ =Y1 145

Here, let yii = 1 for all (4]) pairs, then Eq. (10) is obtained finally. 

x,=- ' (1=1,...n and j=1,...,n) 

3. Interpretation for entropy-based background model 
(3.1) Decision variable X = is the true unknown pairwise comparison matrix, whose (i, j)th 

element is the value of item! evaluated by item/. 
(3.2) Given variable Y = {y,,} is a reference pairwise comparison matrix. 

(3.3) In deciding X, we are trying to minimize an information theoretic distance (or an entropy distance) 

from X to Y under the constraint (4). 
(3.4) Constraint (4) is a conservation law for value flows. That is, the first term of left-hand side of 

Eq.(4), E , is the total sum of input value flows of item k, the second term of left-hand side of Eq.(4), 

X1., is the total sum of output value flows of item k, and therefore, the right-hand side of Eq.(4), pk , is 

(a kind of) value of item k (Fig. I). 

The constraint (4) insists that the sum of each score of item k evaluated by all items (including item k) 

minus the sum of each score of all items evaluated by item k should equal to some value of item k, pk. 
(3.5) Since it is easily shown that p = {Pk satisfies Eq.(I 1), we call this value vector the zero-sum 
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value vector. The proposed entropy AFIP method transforms a zero-sum value vector p to a constant-sum 

nonnegative weight vector w. 

E Pk =0
k=1 

Input value flows Output value flows 
E x„ EX,h 

Zero-sum value 
Pt 

--> 

Fig. 1 Mechanism of determining zero-sum value Pk 

(3.6) The (i,j) th element of pairwise comparison matrix X= Ixy which minimizes D (X, Y) with a 

uniform reference matrix Y (yu = 1 for all (i,j) pairs) and a zero-sum value vector p = Ipk given, has 

a solution of the form "xu = w, / Ic1." 

(3.7) The uniformity of reference matrix 17 indicates that there is no information about the pairwise 

comparison matrix to be compared to. 

4. Weight vector estimation 

Given the uniform reference matrix I/ and zero-sum value vector p, the pairwise comparison matrix X 

(or the weight vector w) can be determined by solving following set of nonlinear equations NLE ((12)-

(14)), the optimality condition for EDMP. 

[NLE] 
WI

xy (i=1,...,n and j =1,...,n) (12) 

Exk, -Exm = (13) 
./ 

Ewk 1 (14) 

5. Numerical experiment 

Proposed entropy AHP is compared with geometric-mean AHP and eigenvector AHP for two classes of 

randomly generated pairwise comparison matrices of size n = 4. 

[Numerical example 1] 
Upper elements of a pairwise comparison matrix A(aq 's with i < ) are determined by Eq.(15). 

*— integer randomly chosen from I to 10 (15) 
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Lower elements (aii 's with i > j) are determined by Eq.(16). 

(24 <-11(5, (16) 0 

Diagonal elements (a„ 's) are all l's. 

Using the pairwise comparison matrix A= fay }, the zero-sum value vector p = {Pk } is given by 

Eq.(17). 
Pk E a kj — Z a n( 

The standard deviation s„ for a constant-sum nonnegative weight vector w is calculated by Eq.(18). 
= —1) 

( 1 
—)

2 

The square-root distancedo between NO and IV is calculated by Eq.(20). 

(17) 

(18) 

(19) 

n 
k dk, = Ekvp, - w, (20) 

#=1 

Figure 2 shows the standard deviation s,„ for the three AMP methods and three square-root distances, dr , 

and d„, averaged over 100 randomly generated A's. 

Here, suffix 1 stands for geometric-mean AMP, 2 for eigenvector AMP and 3 for entropy AMP. Table 1 

shows the detail data for one sample out of the 100 randomly generated A's. 

[Numerical example 2] 

True weight vector w* is assumed as below. 
iv.  =(0.4. 0.3, 0.2, 0.1) (21) 

Using this true weight vector, upper elements of a pairwise comparison matrix A are determined by 

Eq.(22). 
a u <— W; W; 

Then, real random number uniformly distributed over (-0.1, 0.1) is added to au(i <.j). 

Lower elements and diagonal elements are determined by E4s.(23) and (24). 
au 4— V aii (i> j) 

a=1 (i= j) 

(22) 

(23) 

(24) 

Then, the zero-sum value vector p = {Pk } is calculated by Eq.(17). 

Figure 3 shows the standard deviation s„ for the three AMP methods and the three square-root distances, 

dr  , dm and d„, averaged over 100 randomly generated A's. 
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From the numerical experiment results of Example 1 and Example 2, followings are observed. 

I. The pattern of weight vectors obtained by the entropy AHP is not similar to those by the geometric-

mean AHP and eigenvector AHP, because the square-root distances d,, and di, are about 2 to 10 times 

bigger than the square-root distance d„. 

2. The same tendency that dr  <d,3 and d„ <d13 can be observed also with other distance metrics, such as 

absolute value (L1-metric) distance and Kullback-Leibler information theoretic distance. 

3.. The distribution of weight values within a weight vector can be evaluated by the standard deviation s„ 

defined by Eq.(18). Although s,,, values can be different among the three AHP methods from one sample 

to another, the su, values averaged over 100 samples are nearly the same, or no significant difference in s, 

is observed among the three AHP methods. 

6. Conclusion 

A new method of estimating the weight vector w, which is based on an entropy optimization background 

model, or minimizing Kullback-Leibler information theoretic distance (cross-entropy), is proposed. 
Proposed entropy AHP method requires as input data a zero-sum value vector p = {Pk with a property 

that Ep h = 0 and produces a constant-sum nonnegative weight vector w = {w4 with a property 

that E Wk = 1 and wk > 0. Therefore, in the framework of proposed entropy Al-IP, AFIP functions 

as a transformation from p to w. Although pairwise comparison matrix A is used to estimate a zero-sum 

value vector p in our numerical examples, we insist that measurement of zero-sum value vector p alone is 

essential for proposed entropy AHP. 
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