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ABSTRACT

Some work has been done in the past on statistically deriving priorities in Analytic Hierarchy Process
(AHP). In AHP, the aggregated worths of the alternatives, when compared with respect to several criteria,
are estimated in a hierarchical comparisons model introduced by Saaty. In this setup, statistical models
are used for Saaty’s method of scaling in paired comparisons experiments in any level of the hierarchy. At
the end, the final priority weights of the alternatives and related inferences are developed with appropriate
statistical methods. Existing statistical methods in the literature assume independence of the entries of
the paired comparison matrix. However these entries are highly dependent among themselves. In this
article, we propose a statistical method which allows for the dependence among the entries of the pairwise
comparisons matrix. The proposed method is then illustrated with a numerical example. We also consider
the interval estimation based on large-sample theory and examine the actual coverage probabilities of these
confidence intervals in case of small samples using a Monte Carlo simulation study.

Keywords: aggregated priority weight, dependence of judgments, equality of two priority vectors, maximum
likelihood estimate, rank order.

1. Introduction

Most of the paired comparison experiments involve preference of one alternative to another on the basis of
several criteria. In the most of the situations, one needs an aggregated estimate of the priority weights of a
set of alternatives with respect to overall quality when compared under several criteria. This multi-criteria
decision making has drawn attention from many research workers. The Analytic Hierarchy Process (AHP;
(Saaty, 1980)) is one such methodology which has received substantial application in various fields. In
the AHP, the priority weights of the alternatives with respect to each criterion can be determined and
then aggregated to give a single overall priority weight of an alternative through a hierarchical structure.
Setting up a hierarchy of interrelated elements (alternatives and criteria) is an important aspect of AHP.
Once the hierarchy is constructed, decision maker(s) provides(provide) his/her (their) relative preferences
for the different alternatives by way of a series of pairwise comparisons in each level of the hierarchy. A
matrix of pairwise comparisons is formed from these judgments for a decision maker.

The eigenvalue method is a deterministic (non-stochastic) method to derive priority weights. In this
method, the errors in judgments are assumed not to exist. However, the true priority weights of the
alternatives are difficult to be assessed by the decision makers in various real life decision making problems.
Hence, it is natural to assume that the pairwise comparisons provided by the decision makers are subject
to random error. In that light, development of probabilistic (stochastic) formulation of the AHP is relevant
and has attracted considerable interest [for example, (Arbel, 1989), (Basak, 1991), (Basak, 1998), (Bryson
and Joseph, 2000), (Crawford and Williams, 1985), (de Jong, 1984), (Genest and Rivest, 1994), (Hahn,
2003), (Haines, 1998), (Jensen,, 1984), (Lipovetsky and Tishler, 1999), (Ramanathan. 1997), (Saaty and
Vargas, 1987), (Stam and Duarte Silva, 1997), (Sugihara, Ishii, and Tanaka, 2004)]. Stochastic method
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is of much relevance when the priority weights are to be derived for a group of decision makers. In that
situation, stochastic formulation is established through the variability across the multiple decision makers
in which case the random errors for these individuals are assumed to have a known probability distribution.
Random errors for different paired comparison entries, however, are generally assumed to be independent.
But in reality these random errors are clearly dependent in the view of the definition of consistency
(aik = aij × ajk). This defintion of consistency is not necessarily satisfied for all i, j, k = 1, 2, · · · , t where
t is the total number of alternatives and thus it gives rise to an inconsistent pairwise comparison matrix.
In any (consistent or inconsistent) pairwise comparison matrix, one of the entries out of aik, aij and ajk

is connected with the other two. Thus, the stochastic methods which are based on the assumption of
independence among the entries of the pairwise comparison matrix are not reliable, especially when one
makes some statistical inferences. It is the objective of this article to allow for the dependence among the
pairwise comparison entries in a stochastic method of deriving priority weights.

In section 2, a suitable statistical model is proposed which is not only simple and intuitive but also allows
for the dependence of the pairwise comparison entries. Relevant statistical inferences are proposed in
section 3 for the statistical model developed in section 2. Aggregation of the priority weights through
the hierarchical structure to generate a single overall priority weight of an alternative is discussed in
section 4 along with relevant statistical inference. Finally, the stochastic method developed in the article
is illustrated by some numerical examples and simulation studies in section 6.

2. The Statistical Model

The complex system of the preference problem is decomposed into smaller subsystems in different levels
of a hierarchy. In a simplest form of a hierarchy consisting of three levels, the top of the hierarchy is the
overall objective of making the best comparisons. The second level consists of the criteria for preference.
The final level of the hierarchy contains the alternatives.

In group decision making, a number of individuals participate in providing judgments. They compare the
priority weights of the criteria with respect to the over-all suitability as well as the alternatives with respect
to each single criterion. Suppose t alternatives Ti; i = 1, 2, · · · , t are compared with respect to m criteria
Cα;α = 1, 2, · · · ,m. Let us denote the priority weights of the t alternatives when compared according to
the α-th criterion by the vector πα where πα′ = (πα

1 , πα
2 , · · · , πα

t ) and the priority weights of the m criteria
by the vector π where π′ = (π1, π2, · · · , πm).

∑t
i=1 πα

i = 1 for all α and
∑m

α=1 πα = 1.

Priority weights of the second level are combined with those of the third level to produce the over-all
priority weight vector π∗ of the t alternatives when compared under m criteria is obtained by the equation

π∗ = Dπ (1)

where
π∗′ = (π∗1 , π∗2 , · · · , π∗t )

D = (π1,π2, · · · ,πm)

π′ = (π1, π2, · · · , πm).

 (2)

In (2) and henceforth w′ denote the transpose of the vector w. Consider a typical situation in a certain
level of the hierarchy. s (s can be t or m) elements (elements can be alternatives or criteria) are compared
pairwise by a number of individuals. These individuals are chosen so that they have a common ground
for their beliefs. In case, individual judgments are so apart that they cannot be reconciled, separate
homogeneous groups of individuals can be formed. Let us assume that N individuals form a homogeneous
group and auvk denote the pairwise comparison matrix entry denoting the intensity of preference (in a
ratio scale) of alternative Ti to alternative Tj (or of criterion Cα to criterion Cβ) by the k-th individual,
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k = 1, 2, · · · , N. Since the preferences auvk are collected in ratio scale, it can be thought to be an estimate of
the ratio pu/pv where p′ = (p1, p2, · · · , ps) is the vector of non-normalised (

∑s
u=1 pu 6= 1) priority weights

of the alternatives. Although the usual practice is to collect only the pairwise comparison entries above
the diagonal (given the reciprocal matrix where avu = 1/auv), we will consider collecting both the entries
auv and avu for more information and for allowing us to form the statistical model we are proposing in
this article. Also in that case the estimation problem is invariant to the indexing of the items because of
the fixed entries in both auv and avu. For example, if one observes a12 to be 3, then if some time gap is
allowed before observing a21, the later may be observed at some value other than 1/3 even for the same
individual. With these aijks, for the k-th individual, let yik denote

yuk =
1

1 +
s∑

v=1,v 6=u

1
auvk

(3)

for u = 1, 2, · · · , s, k = 1, 2, · · · , N. It is then clearly shown that yuk can be thought to be an estimate of
the ratio πu = pu/

∑s
u=1 pu;u = 1, 2, · · · , s.

Thus, one can consider the following stochasic model

yuk = πu + euk (4)

in which euks are random variables with the expected value (mean) zero for u = 1, 2, · · · , s, k = 1, 2, · · · , N.
Most of the body of the existing literature assumes euks to be independently distributed. In this article,
we relax that assumption and allow for the dependence of the euks. As discussed before, auvs realistically
are not independent and as a consequence euks realistically should not be distributed independently. We,
therefore, assume that the covariance (dispersion) matrix of euks to be given by a non-diagonal matrix
Σ. In order to simplify the related statistical inference method we further assume that euks have Normal
distribution. Hence, in a common statistical notation, euks are distributed as multi-variate Normal N(0,Σ).
From (4), yuks are then distributed as multi-variate Normal N(π,Σ) where π′ = (π1, π2, · · · , πs).

In the next section, we present some appropriate statistical inferences regarding a single group (normalised)
priority vector π. We also present a statistical method for testing the equality of the normalised priority
vectors for two groups of individuals in there.

3. Inference on the Priority Weights

Let the vector Yk
′ denote the vector of the random variables (y1k, y2k, · · · , ys,k) for the k-th individual

in a given group; k = 1, 2, · · · , N where yuk;u = 1, 2, · · · , s are computed as (3). Then Y1
′,Y2

′, · · · ,YN
′

are independently and identically distributed random vectors from multi-variate Normal N(π,Σ). The
maximum likelihood estimates of π and Σ are given, respectively, by

p′ = (p1, · · · , ps); pu =
ȳuN

N∑
u=1

ȳuN

;u = 1, · · · , s (5)

where

ȲN =
1
N

N∑
k=1

Yk = (ȳ1N , · · · , ȳsN )

and
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SN =
1

N − 1

N∑
k=1

(Yk − ȲN )(Yk − ȲN )′. (6)

3.1. Testing a Hypothesis That The Normalised Priority Vector π Is A Given Vector

For a small number N of individuals in a group, let the hypothesis that normalised priority vector π
is a given vector π0 be denoted by H01; i.e, H01 : π = π0. The test statistic for testing H01 is T 2

1N =
N(ȲN−π0)′S−1

N (ȲN−π0). The well-known likelihood ratio test rejects H01 when T 2
1N exceeds the critical

value

T 2
10 =

(N − 1)(s)
N − s

Fs,N−s(α) (7)

in which Fs,N−s(α) is the 100α% point of the F -distribution with the numerator and the denominator
degrees of freedom given by s and N − s respectively.

When the number N of individuals in a group is sufficiently large (N ≥ 30), then H0 is rejected when T 2
1N

exceeds the critical value χ2
s where χ2

s is the 100α% point of the χ2-distribution with degrees of freedom
s.

3.2. A Confidence Region for the Priority Vector π

The probability is 1− α of drawing a sample of N with mean ȲN and covariance matrix SN such that

N(ȲN − π)′S−1
N (ȲN − π) ≤ T 2

10 (8)

in which T 2
10 is given by (7). When (8) is computed for a particular sample, we have confidence probability

1 − α that (8) is a true statement concerning the vector π. The inequality in (8) is the interior and
boundary of an ellipsoid in the s-dimensional space of π with center at ȲN and with size and shape
depending on S−1

N and α and we state that π lies within this ellipsoid with confidence probability 1− α.

3.3. A Test For The Rank Order In Priority Vector π

Using specific simultaneous confidence intervals for linear combinations of the priority vector, one can
perform a test for the rank order in the normalised priority vector π. One can assert with the confidence
1− α that the unknown priority vector π satisfies simultaneously for all γ the inequalities

|γ′ȲN − γ′π| ≤
√

γ′Sγ

√
T 2

10

N
. (9)

The confidence region in (8) can be explored by appropriately setting γ in (9). For example, by setting γ
to be (1, 0, 0, · · · , 0)′ and (0, 0, 1, 0, · · · , 0)′, one can get the confidence intervals for π1 and π3 respectively.
For testing the rank order in the priority vector, however, one needs to get the simultaneous confidence
intervals for π1 − π2, π2 − π3, · · · , πs−1 − πs. Confidence intervals for π1 − π2, π2 − π3, · · · , πs−1 − πs are
accomplished by choosing the following γ vectors of length (s− 1)
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γ1 = (1,−1, 0, · · · , 0)′,

γ2 = (0, 1,−1, · · · , 0)′,

...

γs−1 = (0, 0, · · · , 0, 1,−1)′.


(10)

In that case, using (9) and (10), the simultaneous confidence intervals of π1 − π2, π2 − π3, · · · , πs−1 − πs

turn out to be

(Ȳ1 − Ȳ2 −M1, Ȳ1 − Ȳ2 + M1),

(Ȳ2 − Ȳ3 −M2, Ȳ2 − Ȳ3 + M2),

...

(Ȳs−2 − Ȳs−1 −Ms−1, Ȳs−2 − Ȳs−1 + Ms−1)


(11)

where Ȳ′
N = (Ȳ1, Ȳ2, · · · , Ȳs−1) and Mu =

√
γ′uSγu

√
T 2

10
N ; u = 1, 2, · · · , s − 1 with γu;u = 1, 2, · · · , s − 1

as given in (10). If any of the individual confidence intervals includes 0, then that particular pair of the
priority vectors should be considered tied. For example, if the confidence interval for π2−π3, given by the
second one in (11), includes 0, then the priorities π2 and π3 would be considered to be tied. On the other
hand, if that particular confidence interval consists of all positive (negative) numbers then we conclude
that π2 have significantly higher (lower) rank than π3. At the end, simultaneously considering all of these
individual confidence intervals, one establishes a statistical rank order in the prioirity vector.

3.4. A Test For The Equality Of The Priority Vectors Of Two Groups

In many situations, there are two groups of individuals who are interested in the same decision making
involving same sets of alternatives and criteria. In that case, a natural question arises about the sim-
ilarities or dissimilarities of the two priority vectors of these two groups of individuals. Let us denote
the (normalized) priority vectors for these two groups by π(1) and π(2) and let the hypothesis that these
priority vectors are equal be denoted by H02; i.e, H02 : π(1) = π(2).

The covariance matrices of the populations of these two groups are assumed to be equal but unknown.
Let Y(1)

1 ,Y(1)
2 , · · · ,Y(1)

N1
denote the vectors of random variables (as defined in the beginning of section 3)

from the first group of individuals. Let us assume that these are independently and identically distributed
from multi-variate Normal N(π(1)

1 ,Σ). Let Y(2)
1 ,Y(2)

2 , · · · ,Y(2)
N2

denote those for the second group of
individuals and let us assume that these are independently and identically distributed from multi-variate
Normal N(π(2),Σ). Then Ȳ(1)

N1
and Ȳ(2)

N2
will denote the mean for these two groups and they are distributed

as multivariate Normal N(π(1),Σ/N1) and N(π(2),Σ/N2) respectively. Consequently, the test statistic
for testing H02 is

T 2
2N =

N1N2

N1 + N2
(Ȳ(1)

N1
− Ȳ(2)

N2
)′S−1(Ȳ(1)

N1
− Ȳ(2)

N2
)
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in which the sample covariance matrix is

S =
1

N1 + N2 − 2

[
N1∑
u=1

(Ȳ(1)
u − Ȳ(1)

N1
) (Ȳ(1)

u − Ȳ(1)
N1

)′ +
N2∑
u=1

(Ȳ(2)
u − Ȳ(2)

N2
) (Ȳ(2)

u − Ȳ(2)
N2

)′
]
.

H02 is rejected when T 2
2N exceeds the critical value

T 2
20 =

(N1 + N2 − 2)(s)
N1 + N2 − s− 1

Fs,N1+N2−s−1(α) (12)

in which Fs,N1+N2−s−1(α) is the 100α% point of the F -distribution with the numerator and the denomi-
nator degrees of freedom given by s and N1 + N2 − s− 1 respectively.

Simultaneous confidence intervals of π(1) − π(2) = m (say) could be used to compare the priority vectors
π(1) and π(2) of two groups of individuals componentwise and are given by

|γ′(Ȳ(1)
N1

− Ȳ(2)
N2

)− γ′m| ≤
√

γ′Sγ

√
N1 + N2

N1N2
T 2

2N (13)

for all γ. Selecting length s vectors γ′1 = (1, 0, , · · · , 0),γ′2 = (0, 1, 0, · · · , 0), · · · ,γ′s = (0, 0, · · · , 0, 1), one
gets simultaneous confidence intervals for the differences of component priorities π

(1)
u −π

(2)
u ;u = 1, 2, · · · , s.

Then simultaneous confidence intervals of π
(1)
1 − π

(2)
1 , π

(1)
2 − π

(2)
2 , · · · , π(1)

s − π
(2)
s turn out to be

(Ȳ (1)
1 − Ȳ

(2)
1 − P1, Ȳ

(1)
1 − Ȳ

(2)
1 + P1),

(Ȳ (1)
2 − Ȳ

(2)
2 − P2, Ȳ

(1)
2 − Ȳ

(2)
2 + P2),

...

(Ȳ (1)
s − Ȳ

(2)
s − Ps, Ȳ

(1)
s − Ȳ

(2)
s + Ps),


(14)

where Pu =
√

γ′uSγu

√
N1+N2
N1N2

T 2
20;u = 1, 2, · · · , s.. If any of the individual confidence intervals includes

0, then that particular component of the priority vectors should be considered tied. For example, if the
confidence interval for π

(1)
2 − π

(2)
2 , given by the second one in (14), includes 0, then the priorities π

(1)
2 and

π
(2)
2 would be considered to be tied. On the other hand, if that particular confidence interval consists of

all positive (negative) numbers then we conclude that π
(1)
2 have significantly higher (lower) than π

(2)
2 .

4. Aggregation of the Priority Weights

Maximum likelihood procedure described in section 3 generates the vectors π1,π2, ...π2 as well as the
vector π. These vectors are combined in the composite priority vector π∗ of the alternatives for the overall
preference through the equations given by (1) and (2).

The following lemma gives the covariance matrix of the vector π∗ .
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Lemma : If the error terms associated with the criteria and alternatives as well as those corresponding to
the different criteria are uncorrelated then the covariance matrix Σ∗ of the over-all priority weight vector
π∗ is given by

Σ∗ =

 Σ1 b

b′ σ00

 . (15)

where σij is the ij-th element of the matrix Σ1 and is given by

σij = cov(π∗i , π∗j ) =
m∑

α=1

σα
ij

[
σαα + (πα)2

]
+

m∑
α=1

m∑
β=1

πα
i σαβπβ

j (16)

for i, j = 1, 2, · · · , t− 1. In (16), σα
ij is the ij-th element of the covariance matrix Σα of the priority vector

of t alternatives with respect to α-th criterion and σαβ is the αβ-th element of the covariance matrix
Σcriteria of the priority vector of m criteria. In (15), the vector b is given by b′ = (b1, b2, · · · , bt−1) where

bi = −
t−1∑
j=1

σij (17)

and σ00 is given by

σ00 =
t−1∑
i=1

t−1∑
j=1

σij . (18)

Proof : A result given in Feldstein (1971) states that if α, β and γ are random vectors with respective
mean vectors ᾱ, β̄ and γ̄, then provided both α and β are uncorrelated with γ,

cov
(
α′γ,β′γ

)
= tr [cov(γ)cov(β,α)] + ᾱ′cov(γ)β̄ + γ̄′cov(β,α)γ̄ (19)

where tr[A] denotes the trace of matrix A. Let now α and β in (19) be replaced by di and dj , the
estimated i-th and j-th row of the matrix D of (2) and γ in (19) be replaced by vector p, the estimate of
the priority weight vector (of m criteria) π′ given by (2). Then, one gets

σij = cov(π∗
i ,π

∗
j )

= cov(d′ip,d′jp)

= tr[cov(p)cov(dj ,di)] + d̄′icov(p)d̄j + p̄′cov(dj ,di)p̄. (20)

If the error terms associated with different criteria are uncorrelated, cov(dj ,di) is a diagonal matrix with
entries σ1

ij , σ
2
ij , · · · , σm

ij . Then,

tr[cov(p)cov(dj ,di)] =
m∑

α=1

σα
ijσαα. (21)

Next it can be seen easily that

d̄′icov(p)d̄j = π′
icov(p)πj
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=
m∑

α=1

m∑
β=1

πα
i σαβπβ

j (22)

and

p̄′cov(dj ,di)p̄ = π′cov(dj ,di)π

=
m∑

α=1

(πα)2σα
ij . (23)

Finally, substituting the results of (21), (22) and (23) in the right hand side of (20), one gets (16). Also,
(17) and (18) follow after noting that

t∑
i=1

π∗i = 1.

Remark: In order to get the estimates of σij in (16), one needs to use the estimate of the covariance
matrices Σα;α = 1, 2, · · · ,m and Σcriteria. The estimate of Σα is given by (6) where Yk is substituted by
(yα

1k, yα
2k, · · · , yα

t−1,k). Here, yα
ik; i = 1, 2, · · · , t− 1 is obtained by (3) with s replaced by t and auvk replaced

by aα
ijk, the (i, j)-th pairwise comparison entry under criterion α by the k-th individual.

Next to estimate Σcriteria, again (6) is used where Yk is substituted by (y1k, y2k, · · · , ym−1,k) where
yαk, α = 1, 2, · · · ,m − 1 is obtained by (3) with with s replaced by m andauvk replaced by aαβk, the
pairwise comparison entry of criterion α and β by the k-th individual. Let then (3) is denoted by S

(1)
N .

The estimate of Σcriteria is given by

 S
(1)
N d

d′ s0

 . (24)

In (24), the vector d is given by d′ = (d1, d2, · · · , dm−1) where

di = −
m−1∑
j=1

s
(1)
ij (25)

and s0 is given by

s0 =
m−1∑
i=1

m−1∑
j=1

s
(1)
ij (26)

where s
(1)
ij is the ij-th element of the matrix S

(1)
N .

5. Numerical Illustration

In this section, we present an artificial data on the school selection example given by (Saaty, 1980) to
illustrate the method developed in the paper. Seven independent observations for each of the thirty pairs
of six criteria [Learning (L), Friends (F), School Life (S), Vocational Training (V), College Preparatiopn
(C) and Music Classes (M)] were collected from seven judges of similar background in an hypothetical
experiment. The data are recorded in Table 1. For example, the fourth observation on the pair (L,F) is
1.5 which means that L is preferred 1.5 times F. Also, three schools (A, B, C) were compared with respect
to each of these six criteria. The data are recorded in Tables 2 through 7.
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Table 1. Comparisons Data of six criteria with respect to overall
satisfaction with school; N = 7.

Observations
Pairs 1 2 3 4 5 6 7
(L,F) 4 3 2 1.5 2.5 4 3.5
(L,S) 3 2.5 2 3.2 2 2.5 3
(L,V) 1 1.5 0.5 1 0.5 2 1
(L,C) 3 2.5 4 3.5 3 2 2.5
(L,M) 4 3 3.5 3 4 3 3.5
(F,L) 0.2 0.25 0.5 0.5 0.67 0.33 0.25
(F,S) 6 3.5 4 4.5 5 7 6.5
(F,V) 3 2.5 3 4 3.5 2 2.5
(F,C) 0.2 0.25 0.33 0.2 0.17 0.2 0.25
(F,M) 1 1.5 1 2 1.5 0.5 2
(S,L) 0.5 0.33 0.5 0.33 0.33 0.5 0.33
(S,F) 0.2 0.25 0.33 0.2 0.17 0.17 0.17
(S,V) 0.2 0.25 0.2 0.25 0.33 0.2 0.25
(S,C) 0.17 0.25 0.2 0.33 0.5 0.2 0.33
(S,M) 0.2 0.25 0.33 0.25 0.25 0.2 0.33
(V,L) 0.5 0.5 3 0.5 2 0.5 0.5
(V,F) 0.5 0.33 0.5 0.2 0.25 0.5 0.33
(V,S) 4 3 4 4 3 4 3
(V,C) 1 0.5 2 0.5 1 1.5 2
(V,M) 0.33 0.5 0.5 0.33 0.5 1 0.5
(C,L) 0.5 0.33 0.25 0.33 0.5 0.33 0.5
(C,F) 4 3 2 4 5 5 3
(C,S) 5 3 5 2 3 4 3
(C,V) 1 2 0.5 3 0.5 0.5 0.33
(C,M) 3 2 2.5 3.5 3 2 3.5
(M,L) 0.2 0.5 0.25 0.25 0.25 0.5 0.33
(M,F) 1 0.5 0.5 0.33 0.5 3 0.33
(M,S) 4 3 4 3 5 4 3
(M,V) 4 3 2 4 3 1 3
(M,C) 0.33 0.33 0.5 0.25 0.33 0.5 0.25

Table 2. Comparisons Data of three schools with respect to
Learning; N = 5.

Observations
Pairs 1 2 3 4 5
(A,B) 0.33 0.5 0.33 0.5 1
(A,C) 0.5 0.33 0.33 0.25 0.33
(B,A) 2 3 3 2 1
(B,C) 3 3.5 2 2.5 3
(C,A) 3 4 2 3 2
(C,B) 0.5 0.25 0.33 0.5 0.25
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Table 3. Comparisons Data of three schools with respect to
Friends; N = 6.

Observations
Pairs 1 2 3 4 5 6
(A,B) 1 1.5 1 1 0.5 1
(A,C) 1 2 1.5 0.5 1 0.5
(B,A) 1 0.5 0.5 1 2 1
(B,C) 1 1 1 1 0.5 1
(C,A) 1 0.33 0.5 3 1 3
(C,B) 1 0.5 1 0.5 3 1

Table 4. Comparisons Data of three schools with respect to
School Life N = 6.

Observations
Pairs 1 2 3 4 5 6
(A,B) 5 4.5 5 5.5 4.5 5
(A,C) 1 1 0.5 2 1 1
(B,A) 0.25 0.2 0.25 0.2 0.2 0.25
(B,C) 0.2 0.25 0.2 0.2 0.33 0.25
(C,A) 1 0.5 2 0.33 1 0.5
(C,B) 4 3 5 4 3 5

Table 5. Comparisons Data of three schools with respect to
Vocational Training; N = 5.

Observations
Pairs 1 2 3 4 5
(A,B) 9 8 8.5 9.5 7.5
(A,C) 7 6.5 7.5 7.5 7
(B,A) 0.1 0.11 0.12 0.11 0.10
(B,C) 0.2 0.25 0.2 0.33 0.25
(B,A) 0.1 0.11 0.12 0.11 0.10
(C,A) 0.17 0.14 0.12 0.17 0.14
(C,B) 4 3 4 2 5

Table 6. Comparisons Data of three schools with respect to
College Preparation; N = 7.

Observations
Pairs 1 2 3 4 5 6 7
(A,B) 0.5 0.33 1 0.5 0.33 1 1
(A,C) 1 1 2 1 0.5 0.5 1
(B,A) 3 4 1 3 4 1 1
(B,C) 2 1.5 1 1.5 2 1.5 1.5
(C,A) 1 0.5 0.33 1 3 3 1.5
(C,B) 0.5 0.5 0.5 0.5 0.33 0.5 1
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Table 7. Comparisons Data of three schools with respect to
Music Classes N = 5.

Observations
Pairs 1 2 3 4 5
(A,B) 6 5.5 6.5 4.5 5
(A,C) 4 4.5 3.5 5 4.5
(B,A) 0.14 0.18 0.14 0.2 0.25
(B,C) 0.33 0.5 0.33 0.33 0.5
(C,A) 0.33 0.2 0.25 0.2 0.25
(C,B) 3 3 4 4 3

The estimates p′, pL′, pF ′, pS′, pV ′, pC′, pM ′ respectively for π′, πL′, πF ′, πS′, πV ′, πC′, πM ′ are computed us-
ing (5) are given by:

p′ = (0.33, 0.14, 0.06, 0.14, 0.20, 0.13)

pL′ = (0.17, 0.57, 0.26)

pF ′ = (0.34, 0.32, 0.34)

pS′ = (0.48, 0.11, 0.41)

pV ′ = (0.80, 0.07, 0.13)

pC′ = (0.27, 0.47, 0.26)

pM ′ = (0.70, 0.11, 0.19).



(27)

The estimate p∗ = (p∗A, p∗B , p∗C) of the over-all priority weight vector π∗ is then obtained through (1) as
(.3895, .3576, .2529).

We have constructed the artificial data in Tables 1 through 7 as random fluctuations around the example
given in (Saaty, 1980) collected from a single indivudual. These data in Tables 1 through 7 were used by
Basak, 1989 in a separate statistical model. We were surprised to see that the estimates in () were very
close to the answers obtained in (Basak, 1989). These values are also very close to the solution of Saaty’e
eigenvalue method solution. In this article, the methods used were very simple and less time consuming.
Yet the solutions are very close to the ones used in other methods.

Next we find the estimates of the covariance matrices of the estimates of p, pL, pF , pS , pV , pC and pM using
(6) respectively as follows.

Estimated covariance matrix of p:

S =



0.0038 −0.0008 −0.0002 −0.0013 0.0001 0.0010

−0.0008 0.0003 0.0001 0.0005 −0.0003 −0.0002

−0.0002 0.0001 0.0000 0.0001 −0.0000 −0.0001

−0.0013 0.0005 0.0001 0.0021 −0.0002 −0.0007

0.0001 −0.0003 −0.0000 −0.0002 0.0009 −0.0002

0.0010 −0.0002 −0.0001 −0.0007 −0.0002 0.0006
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Estimated covariance matrix of pL:

SL =


0.0005 −0.0009 −0.0007

−0.0009 0.0046 0.0005

−0.0007 0.0005 0.0034


Estimated covariance matrix of pF :

SF =


0.0076 −0.0026 −0.0079

−0.0026 0.0017 0.0026

−0.0079 0.0026 0.0106


Estimated covariance matrix of pS :

SS =


0.0080 −0.0003 −0.0100

−0.0003 0.0001 0.0002

−0.0100 0.0002 0.0167


Estimated covariance matrix of pV :

SV =


0.0001 0.0000 0.0001

0.0000 0.0000 −0.0000

0.0001 −0.0000 0.0002


Estimated covariance matrix of pC :

SC =


0.0065 −0.0066 0.0006

−0.0066 0.0095 −0.0019

0.0006 −0.0019 0.0052


Estimated covariance matrix of pM :

SM =


0.0000 0.0000 −0.0000

0.0000 0.0005 −0.0003

−0.0000 −0.0003 0.0008

 .

Finally, the estimated covariance matrix of the estimated over-all priority vector p∗ is obtained through
(15) as:


0.0012 −0.0008 −0.0023

−0.0008 0.0045 −0.0016

−0.0023 −0.0016 0.0053

 .
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Next, we apply the statistical inference methods developed in this article to the hierarchy of the six criteria.
First we test whether the priority vector π of the criteria is given by vector π0 = (.3, .14, .1, .13, .2, .13);
i.e, we test the hypothesis H01 : π = π0. The test statistic T 2

1N = N(ȲN − π0)′S−1
N (ȲN − π0), given

in section 3.1, for testing H01 is computed to be 1243.0966. The critical value T 2
10 = (N−1)(s)

N−s Fs,N−s(α)
given by (7) is computed as 7× 6F6,1(.05) = 9828. Therefore, in this case, H01 is not rejected at 5% level
of significance since 1243.0966 is not larger than 9828 and we believe that the priority vector of the six
criteria is given by (.3, .14, .1, .13, .2, .13).

Secondly, we test the rank order in the priority vector π of the criteria. Using (11), simultaneous confidence
intervals of πL − πC , πC − πF , πF − πV , πV − πM , πM − πS turn out to be (.07, .19), (.01, .11), (-.03, .31),
(-.02, .3), (-.01, .27). Since the last three of these confidence intervals contain zero, we conclude the rank
order of the priorities of six criteria as πL > πC > πF = πV = πM = πS .

In order to apply the methodology developed in the article for comparing the priority of two groups, we
considered another artificial comparisons Data of six criteria with respect to overall satisfaction with school
for a second group of individuals with again N = 7 individuals. We are suppressing the details of the data as
well as computations for the sake of brevity. The estimated priority vector of those six criteria for the second
group was found to be (0.22, 0.14, 0.21, 0.14, 0.13, 0.16). The equality of the priority vectors is tested by the
hypothesis H02 : π(1) = π(2) where π(1) = (.3, .14, .1, .13, .2, .13) and π(2) = (0.2, 0.15, 0.2, 0.15, 0.15, 0.15).
The test statistic T 2

2N = N1N2
N1+N2

(Ȳ(1)
N1
−Ȳ(2)

N2
)′S−1(Ȳ(1)

N1
−Ȳ(2)

N2
) given by (??) was computed to be 174.2463.

The critical value T 2
20 = (N1+N2−2)(s)

N1+N2−s−1 Fs,N1+N2−s−1(α) given by (12) is computed as 12×6
7 F6,7(.05) = 39.81.

Since 174.2463 is larger than the critical value 39.81, H02 is rejected at 5% level of significance and we
believe that the priority vectors of the six criteria for these two groups are not equal.

Since we find that the priority vectors of two groups are not equal, we investigate into the simultaneous
confidence intervals for the differences of component priorities π

(1)
u −π

(2)
u ;u = L,F, S, V, C,M. Using (14),

simultaneous confidence intervals of π
(1)
L − π

(2)
L , π

(1)
F − π

(2)
F , π

(1)
S − π

(2)
S , π

(1)
V − π

(2)
V , π

(1)
C − π

(2)
C , π

(1)
M − π

(2)
M

turn out to be (.05, .17), (-.07, .07), (-.23, -.07), (-.09, .09), (.03, .11), (-.07, .01). Since the confidence
intervals for π

(1)
L − π

(2)
L , π

(1)
S − π

(2)
S and π

(1)
C − π

(2)
C do not contain zero, we conclude that the components

L, S and C of the priority vectors of two groups are significantly different.

6. Concluding Remark

In this article, we use a simple statistical model to make relevent inferences in AHP which allow for
dependence among the entries of the pairwise comparison matrix. Using this model, one can also test
for the rank order in the priorities for a group of individuals and test whether there is any significant
differences in the prioirity weights between two separate groups of individuals.
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