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Abstract: The outcomes at the tips of a decision tree cannot always be represented by a single 
numerical value on a one-dimensional axis. In many decision problems the outcomes are multi-
dimensional, and their performance is expressed in a mixture of verbal statements and physical or 
monetary values. We propose to use the scores of cardinal methods for multi-criteria decision analysis 
in order to represent the relative performance of the outcomes. We evaluate the chance forks in the 
tree via the corresponding aggregation procedure: in the Multiplicative ADP via weighted geometric 
means of the scores with the outcome probabilities as exponents, and in SMART via weighted 
arithmetic means of the scores. The procedure is based on the idea that, within a given context, the 
numerical values of verbal quantifiers like somewhat more, more,.., do not depend on what we 
compare, whether it is relative importance or relative likelihood. 

1. Introduction 

A decision tree is a well-known tool to model and to evaluate a decision process which consists of an 
alternating sequence of actions and uncertain consequences (Keeney and Raiffa, 1976; Von 
Winterfeldt and Edwards, 1986). We concern ourselves here with a tree of the simplest possible form. 
At the initial node, the decision maker has the choice between the sure outcome Ao on the one hand 
and the chance fork with the uncertain, mutually exclusive outcomes Ai and A2 on the other. It is 
customary in Decision Analysis to express the consequences in monetary values. If the value of A0 is 
situated between the values of A1 and A2, the decision maker is supposed to estimate the probabilities 
pi and p2 of the respective outcomes A1 and A2. Thereafter he/she faces the question of how to judge 
the chance fork, that is, how to aggregate the values of AI and A2 and their associated probabilities 
into a single quantity that can properly be compared with a single quantity representing the sure 
outcome Ao. The aggregation procedure is the core Id the backfolding process in larger decision trees 
whereby the decision maker repeatedly replaces chance forks by single quantities. During the process 
he/she works backwards through the tree until he/she can identify the action to be chosen at the initial 

1node and at subsequent decision nodes. 
1

In the aggregation procedure the decision maker fitst determines a range (L, If) of relevant values on 
the axis in question, to be used uniformly throughout the analysis. Thereafter, he/she replaces each 
outcome Aj ( j = 0, 1, 2) by a lottery or gamble with the probability uj to obtain the high endpoint H 
(generally high benefits) of the range and the probability 1 - uj to obtain the low endpoint L (low 
benefits or even losses). The decision maker chooses the so-called utility uj in such a way that he/she 
is indifferent between the monetary value of A, and, the gamble. Finally, he/she compares the utility u0 
of A0 with the subjective expected utility 

P:10 + P2u2 

of the chance fork. One usually observes that the decision maker is risk-averting, in the sense that the 
monetary value of Al  is lower than the expected value 

uj H + (1 - uj) L 

It is a pleasure to thank Professor D.V. Budescu (University of Illinois, Champaign, Illinois) for his 
critical comments on the first draft of this paper. 
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of the equivalent gamble with the probability up The opposite phenomenon is also known, however: if 
the monetary value of Aj is higher than the expected value, the decision maker is risk-seeking. The 
discrepancy between the monetary value of Ai and the expected value of the equivalent gamble 
motivated the development of Multi-Attribute Utility Theory (MAUT). 

In this paper, we start from the hypothesis that there is a particular reason for the discrepancy. 
Confronted with a gamble which leads either to high benefits or to low benefits or even losses, the 
decision maker faces a multi-criteria decision problem anyway, whether the original outcomes have 
one-dimensional consequences or not. He/she has to weigh, not only the benefits versus the losses with 
due regard to his/her financial position, but also the consequences for his/her status and prestige and 
for his/her relations with other people, for instance. Instead of establishing the utilities of the 
outcomes in a given problem, the decision maker might as well concentrate on the underlying reasons 
why he/she is risk-averting or risk-seeking and on the analysis of the underlying multi-criteria 
decision problem. 

We accordingly consider here the aggregation of outcomes Ao, Ai, and A2 with multi-dimensional 
consequences, under a finite number of performance criteria Ci  C„,. Our objective is to assess the 
chance fork with the outcomes Ai and A2 and their associated probabilities. To illustrate matters, we 
suppose that we have the following problem. A decision maker visits a number of dealers to select a 
car. Late in the afternoon he/she finds a car Ao with an acceptable price and an acceptable reliability 
(for the time being, we ignore the other attributes of cars). The decision maker can now sign the 
contract, but he/she may also continue the search on the next day. On the basis of previous experience 
he/she estimates that there is a chance pi to find a cheaper, somewhat less reliable car Ai, and a 
chance p2 = 1 - pi to find a somewhat more expensive and more reliable car A2. If he/she continues the 
search, however, the deal with the car A0 is over. How to decide now? 

We consider two cardinal methods for multi-criteria decision analysis in order to aggregate the multi-
dimensional consequences: the Multiplicative AHP*(Lootsma, 1993), a variant of  Analytic 
Hierarchy Process (Saaty, 1980), and the Simple Multi-Attribute Rating Technique (Von Winterfeldt 
and Edwards, 1986). In the Multiplicative AHP we are concerned with ratios of preference intensities 
collected via pairwise comparisons. SMART Th based on distance information collected via direct 
rating. 

The organisation of the paper is as follows. First, using the car-selection example we explain how we 
categorize the monetary and the physical values of the alternative cars within the context of the 
decision problem. This enables us to quantify comparative judgemental statements like somewhat 
more, definitely more, and much more expensive or reliable (section 2), and thereafter we can easily 
make a transition to the gradations of relative strength of preference (section 3). Next, we discuss the 
relative importance of the criteria and the numerical scale to quantify their relative importance 
(section 4). An intermezzo is given by a numerical example to prepare the ground for the proposed 
procedure (section 5). Finally, we aggregate the impact scores of the alternative cars Ai and Ay using 
the associated probabilities pi and p2 as well as the weights of the criteria Ci and Cy, the price and the 
reliability of the alternative cars respectively (section 6). The aggregated result, a weighted geometric 
mean of the impact scores with the outcome probabilities and the criterion weights in the exponents, is 
not an expected value but an expression reflecting the relative importance of the outcome probabilities 
(section 7). 

2. Categorical judgement on a one-dimensional axis

Let us start with the subjective evaluation of the cars under the price criterion. In the Multiplicative 
AHP, we assume that the decision maker is only prepared to consider alternatives with prices between 
a desired lower bound P„,th, the price to be paid anyway for the cars which he/she seriously has in 
mind, and an upper bound P,„,ax, the price that he/she cannot or does not really want to exceed. In 
order to model the relative preference for alternative Ai respect to Ak we categorize the prices which 
are in principle acceptable. We first "cover" the range (P„d„, P ) by the grid with the geometric 
sequence of points 
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Pp = Pmir,+ (Pm n - Pima)* 2IV64, s = 0, 1,...,6. 

In what follows we take Po. to stand for the p.-th price 
its order of magnitude, which is given by 

category and the integer-valued parameter tt for 

= 2Iog {64 * [Po. - Pminll[Pmu - Prainfi (1) 

Categorization of the prices means that each price in or slightly outside the range (Poo„, P„,,,) is 
supposed to "belong" to a particular category, name y the category represented by the nearest P. Of 
course, categorization could more appropriately be modelled via fuzzy-set theory, but for the time 
being we ignore this. We refer to the cars of the category Po as the cheap ones within the given 
context, and to the cars of the categories P2. P4, and P6 as the somewhat more, more, and much more 
expensive ones. At the odd-numbered grid points P1, 133, and P5 the decision maker hesitates between 
the two adjacent gradations of expensiveness. If necessary, we can also introduce the category Pg of 
vastly more expensive cars which are situated beyond the range, as well as the category P7 if the 
decision maker hesitates between much more and vastly more expensiveness. 

The even-numbered grid points are the so-called major grid points designating the major gradations of 
expensiveness. They constitute a geometric sequence in the range (P„ with progression factor 
4. If we also take into account the odd-numbered grid points corresponding to hesitations, we have a 
geometric sequence with progression factor 2. We employed a number of examples such as the 
progression of historical periods and planning horizons, the classification of nations aecording to size, 
and the perception of light and sound intensities, in order to show that human beings follow the above 
pattern in many unrelated areas when they categoriz9 an interval (Lootsma, 1993). 

Suppose that the prices of the cars Ai and Ak belong to the categories represented by 

Pp. and Pp
k 

respectively. In the Multiplicative AHP, the relative preference for Ai with respect to Ak is expressed 
by the inverse ratio of the price increments above P,L, so that it can be written as 

[Pit ri P • I= 2Y (2) 
j I nu

By this definition, a car in the price category Po is 4 times more desirable than a car in the category 
P2. The last-named car is said to be somewhat more expensive. Thus, we identify the ratio 4:1 with — 
weak preference. Similarly, we identify the ratio 16:1 with definite preference, etc. The relative 
preference depends strongly on Poo; and weakly on Pray When Pinn increases, two prices which 
initially belong to different pricg categories will tend to belong to the same one. 

It is common in psychophysics, when a ratio of two stimulus intensities is discussed, to use the 
differen?e of the corresponding orders of magnitude. One records the logarithm of the ratio as a 
difference of values on the so-called decibel scale. We can easily follow this mode of operation via the 
method of direct scoring which is usually employed in SMART (Lootsma, 1993, see the figures 1 and 
2). The price categories are therefore recorded on a so-called qualitative scale, such as the familiar 
seven-point scale with the grades 4, 5, ..., 10, between the grade 4 for poor performance that can 
nevertheless be compensated by a more satisfactory performance elsewhere (current practice in our 
schools), and the grade 10 for excellent performance. The price category around Pp is represented by 
the grade g — 10 - p., so that the major gradations of comparative judgement are designated by 10 
(cheap car, excellent, p. = 0), 8 (somewhat more expensive car, good, s = 2), 6 (fair, ji = 4), and 4 
(poor, s = 6). Obviously, the relative preference for the car A1 with respect to Ak can now be expressed 
by the difference of grades 

([Pt,. k - Pon,J1[13i - Pnuni) = = gk. (3) 
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Because we only work with differences of grades, we can replace the SMART scale 4,   10 by the 
familiar seven-point scale 1 7 which is frequently used in the social sciences. 

When the cars are judged under the price criterion, the desired target is at the lower limit P„th, of the 
interval of possible prices. Under the reliability criterion, however, the desired target is at the upper 
limit. Numerical data to estimate the reliability are usually available. Consumer organizations collect 
information about many types and models of cars which follow the prescribed maintenance 
procedures, and they publish the frequencies of technical failures in the first three or five years or the 
proportions of users who report serious difficulties in those periods (see the Annual Auto Issue of the 
Consumer Reports, US Consumer Union). Let us suppose that the decision maker only considers cars 
with a reliability of at least Ruth" so that he/she is restricted to the interval (/:?,,,in, with Ram
usually set to 100 %. Following the mode of operation just described, we obtain the grid points 

= (R,,,,,- R„,i,,)* 2g/64, t = 0, 1,...,6. 

In general, the alternatives are compared with respect to the desired target. The relative performance 
is inversely proportional to the distance from the target. The reader can easily verify this in the two 
examples just given. If we take the symbols 

RI,. and RA

to denote the reliability of the alternative cars A and At respectively, then the inverse ratio 

- Rgy[R. =2 

represents the relative preference for 44.; with respect to At under the reliability criterion. The 
qualifications "somewhat cheaper" and "somewhat more reliable" imply that the inverse ratio of the 
distances to the respective targets is 4:1. The relationship between the order of magnitude ja and the 
reliability category R,, takes the explicit form 

p.= 9og (64 *[/?  - VW. maz - (4) 
14 

There may be criteria where the categorization starts, not from the desired target at one end of the 
range, but from the opposite end because the target is hazy. An example is given by the categorization 
of the maximum velocities. Sometimes, the target is found in the interior of the range, which usually 
means that the decision maker tries to satisfy a hidden objective. These issues have been discuss0 
elsewhere (Lootsma, 1995). 

The scale 1, 2,(4, 8, 16, 32,64 represents a partitioning of, a given range of acceptable performance 
(acceptable prices and acceptable reliabilities, for instance). This partitioning, which we found in the 
subjective measurement of time (historical periods, planning horizons), space (size of nations), light 
intensities, and sound intensities, can be achieved via extremely simple steps: bisections and 
duplicatioris. One dbes not need a particular unit of measurement to carry out theseoperkiionts. 
Bisections and duplications, the progression factor 2, they will certainly rimind the reader ontie 
partitioning of time in =Meal compositions: tone durations as 'bisections or dupliCations of the 
rhythm? s fundamental beat, and repetition S of phrases in the melody. Bisections and duplications 
seem tO be so deeply embedded in human behaviour that they May have a physioldgical basis in the 
neural system. It is beyond the scope of the present paper, however, to pursue this issue here. 

3. The Multiplicative ARP and SMART 

So tar, we have been working on different dimensions such as consumer price and reliability. 
Judgemental statements like "somewhat more expensive" and "somewhat more reliable" cannot be 
aggregated, however, unless we make a transition to a new, common dimension. That is the reason 
why we take the expression "somewhat more reliable" to stand for "somewhat more desirable" under 
the criterion of reliability. Similarly, we assume that the expression "somewhat more expensive" may 
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stand for "somewhat less desirable" under the price criterion. We shall assume that, under each of the 
respective criteria, the desirability of the alternatives varies over the same interval on the new, 
common dimension, at least during the decision process at hand. 

In the basic evaluation step of the Multiplicative MEP, two alternatives A, and Ak are presented to the 
decision maker who is requested to express his/her comparative judgement between the two under a 
particular criterion CI. With the results of the previous section, we have in general two different ways 
to collect his/her preference information. 

(a). We can ask him/her to consider the axis corresponding to the criterion C; and to specify the 
endpoints of the range of acceptable values. Next, we identify the judgement categories on the range 
and the corresponding orders of magnitude. Thereafter, we can immediately estimate his/her 
preference rtjk for A3 with respect to Ak (the ratio of the subjective values of the two alternatives) under 
the criterion C; by 

ruk = 211(k (5) 

where µif and 11ik denote the orders of magnitude of the respective alternatives under Ci. This context-
related scaling is only feasible when the performance of the alternatives under criterion C; is 
expressed in physical or monetary values. It is particularly attractive when the number of alternatives 
is large (Van Gennip, Hulshof, and Lootsma, 1996). 

(b). We can ask the decision maker to express his/her graded comparative judgement in words, that is, 
to state whether he/she is indifferent between the two alternatives under the given criterion, or 
whether he/she has a weak, a definite, or a strong preference for one of the two. Thereafter, we set the 
numerical estimate ruk of his/her relative preference for Aj with respect to Ak under C; to 

ruk = 2 801, 

where the symbol 813k stands for an integer-valued .ndex designating the major gradations of his/her 
comparative judgement. Thus, Bo = 0 designates indifference, Suit = ±2 designates weak preference, 
etc. Obviously, even values are assigned to Sim in order to represent major gradations, and odd values 
are used when the decision maker hesitates between two adjacent major gradations. This type of 
elicitation is always applied when the performance of the alternatives under criterion Ci cannot be 
measured in physical or monetary values. 

r
Usually, we bundle the estimates rift into pairvifse-comparison matrices, one for each criterion The 
impact score a13 of alternative Aj under criterion C; is given by the geometric mean of the j-th row in 
the corresponding pairwise-comparison matrix. Thus, 

a = Sirlr k 

The final score fj, expressing the global preferenc 
on the new common dimension of desirability 
aggregation rule 

(6) 

for alternative A3 under all. criteria simultaneously 
is calculated according to the geometric-mean 

.6= , (7) 

where the symbol ci stands for the weight of criterion Q. Since we are working with ratio information, 
the impact scores and the final scores of the alternatives are not unique. They can be normalized so 
that they sum to I. The ratio aijaik which expresses the relative preference for Aj with respect to Ak 

under criterion C; is unique, however, as well as the ratio f j/fk which globally expresses the relative 
preference for A3 with respect to Ak. 
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In SMART, the calculations are much simpler. Considering two alternatives Ai and Ak under criterion 
with the grades gu and ga assigned to them, we take the quantity 

=2g r gik

to estimate their relative desirability 

because gii and gik are estimates of 10 - ttu and 10 - gu, respectively. The final scores via SMART are 
accordingly given by the arithmetic-mean aggregation rule 

si = cigu. 

i=1 

A ratio of AMP scores and the corresponding difference of SMART grades are connected by the 
relationship 

= 2g
a ik

whence 

IL = fi r ( ad lei =24 

fk 1-1(aik 

where 

Ajk qigij - Cigik=4i - Sk; 

i=1 i=1 

This shows that the arithmetic-mean aggregation rule in SMART is logarithmically related to the 
geometris-mean aggregation rule in the Multiplicative 4.11T. 

4. The relative importance of the criteria 

With the above aggregation rules we derived scale values for the gradations of the relative importance 
of the criteria via an imaginary experiment. First, we established extreme values for the ratio to of any 
pair of criterion weights. The imaginary decision maker was supposed to consider two real or 
imaginary alternatives Ai and Ak and two criteria such that his/her preference for Ai over Ak under the 
first criterion Cf was roughly equal to his/her preference for Ak over Ai under the second criterion C • 
These inverse preferences were estimated by 

-8 7. 25fr and

respectively, where 8,k designates the selected gradation of his/her comparative judgement. Next, 
assuming that these preferences do not depend on the performance of Ai and Ak under the remaining 
criteria, .we expressed the decision maker's preference for the two alternatives under the'tWo criteria 
Cie and C1 simultaneously by 
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It will be clear that I elk < , since the preference for At over Ak under the two criteria 
simultaneously cannot be greater than the preference for Ai over Ak under one of the criteria 
individually. It was easy to verify that the ratio w varies roughly between 1/16 and 16 when Sik varies 
between -8 and 8, and OA between -I 5j4 land I Sit I. The rather extreme value a) = 16 was obtained 
when SA = 8 and OA = 7, which means that the very strong preference for Aj over Ak under the first 
criterion C1 almost completely wipes out the equally strong but inverse preference under the second 
criterion C,. So, a ratio of 16:1 may be taken to stand for vastly higher importance. 

Next, we converted the gradations for the relative importance of the criteria into numerical values on 
the assumptions that (a) the number of gradations to express the relative importance of the criteria 
equals the number of gradations to express the relative preference for the alternatives, and (b) the 
numerical values associated with these gradations constitute a sequence with geometric progression. 
In the extreme case, where a vastly higher preference under the first criterion is practically wiped out 
by a vastly higher preference under the Second eriterion, we accordingly refer to the relative 
importance of the first criterion with respect to the second one as vastly more. 

A simple geometric sequence of values between 1/16 and 16, with echelons corresponding to 
indifference, weak, strict, strong, and very strong preference, is the sequence 1/16, 1/8, 1/4, 1/2  1, 2, 4, 
8, 16 with progression factor 2. Hence, we obtain the following geometric scale for the major 
gradations in the pairwise comparison of the first criterion Cf with respect to the second criterion Cs: 

16 Cf vastly more important than C„ 
8 Cf much more important than C,, 
4 Cf more important than C,, 
2 Cf somewhat more important than 
1 Cf as important C,, 

S. 

weights 0.95 and 0.05, 
0.90 and 0.10, 
0.80 and 0.20, 
0.66 and 0.33, 
0.50 and 0.50, 

1 /16 Cf vastly less important than C„ 0.05 and 0.95. 

Note that we have a geometric sequence with progression factor if we also allow for threshold 
gradations to express hesitations between two adjacent qualifications. It will be obvious that the 
criteria can be evaluated in the same way, via pairWise comparisons, as the alternatives. In the basic 
experiment we present two criteria to the decision maker and we ask him/her to state whether they are 
equally important or whether one of the two is soimewhat more, more, much more, or vastly more 
important than the other. The judgemental statements are subsequently converted into the 
corresponding values on the above geometric scale. Finally, we calculate and we normalize the 
geometric row means in the pairwise comparison matrix in order to obtain the criterion weights. 

5. The illustrative example 

Let us now illustrate the calculations of the sections 2 and 3 via the car-selection example which we 
introduced in section 1. Under the assumption tiMt the decision maker is only prepared to consider 
prices in the range between Dfl 20.000 (US$ 12.000)and Dfl 30.000 (US$ 18.000), and reliabilities 
between 95 % and 100 % thy these ranges we model the context of the decision problem), we obtain 
the following grid points. 

Price Reliability I Performance Grade 
20.000 100 excellent 10 
20.300 99.9 9 
20.600 99.7 1 good 8 
21.200 99.4 j I 7 
22.500 98.8 fair 6 
25.000 97.5 5 
30.000 95.0 poor 4 
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Let us now suppose that the alternative cars have the prices and the reliabilities displayed in the below 
table (the so-called performance tableau), with the associated SMART grades between brackets. 

Criteria Alternative An Alternative A1 Alternative A2 

CI: Price 22.500 (6) 21.200 (7) 25.000 (5) 
C2: Reliability 98.8 (6) 97.5 (5) 99.4 (7) 

The pairwise-comparison matrices under the price criterion and the reliability criterion are given by 

1 12. Y12 241 
(X X 1) 

1 2 
and y2 1 Y4

2 4 1 

respectively. Let us assume, for the time being, that the two criteria have equal weights. The 
normalized impact scores and the normalized final scores, calculated according to the procedure just 
described, may be found in the below iable, again with the associated SMART grades between 
brackets. 

Criteria Alternative Ao Alternative Ai Alternative A2 

Ci: Price 0.5 0.29 (6) 0.57 (7) 0.14 (5) 
C2: Reliability 0.5 0.29 (6) 0.14 (5) 0.57 (7) 
Final scores 0.33 (6) 0.33 (6) 0.33 (6) 

In the remainder of this paper we will use the above data to illustrate the proposed procedure for 
multi-criteria decision analysis in a decision tree. 

6. Evaluation of a chance fork 

The above example is so symmetric that the decision maker must be indifferent between the sure 
outcome Ao and the chance fork with the outcomes Ai and A2, whatever the method of analysis. When 
we use expected values to aggregate the outcomes, SMART does lead to such a result, both at the level 
of the grades assigned to the alternatives and at the level of the final scores. With m = p2 = 0.5 we 
obtain 

7p1 + 5p2 = 6, 
5p1 +7h=6. 
6p1 + 6p2 = 6. 

Expected values of the AHP scores do not work so nicely. At the level of the impact scores of the 
alternatives we obtain 

0.57 pi + 0.14 p2 # 0.29, 
0.14 p + 0.57 p2 # 0.29, 

for m = p2 = 0.5. Since the Multiplicative ARP is an exponential version of SMART, however, we 
propose to use the probabilities m and p2 as exponents in a weighted geometric mean of scores in 
order to aggregate a chance fork. This yields the desired result, because 

0.57101 . 0.14P2 = 0.29, 

0.14P1 . 0.57P2 = 0.29, 

0.33PI 0.33102 = 033, 

when pi = p2 = 0.5. Since the ability of human beings to estimate the probabilities of uncertain events 
is questionable, we propose to consider m and /22 as coefficients expressing the relative importance of 
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the alternatives in the chance fork. In the next sectio 
the analysis of decision trees in general. 

we show that this is a workable hypothesis in 

Let us now briefly summarize the results of the present section. Suppose that we are concerned with a 
decision tree presenting the choice between the sure outcome Ao on the one hand and the chance fork 
with the mutually exclusive outcomes Ai, j = 1,...,n, and the associated probabilities pi, j = 1 ..... n, on 
the other. Furthermore, the alternatives are to be judged under the criteria Co i = 1 m, with 
corresponding criterion weights ci. Working with SMART, we compare the arithmetic means 

cogio and IE 
i=1 j=1 

where gii stands for the grade assigned to alternative Ai under criterion Co. and we choose the 
arithmetic mean with the highest value. Obviously, the expressions in (8) have the form of an 
expected value (in fact expected values of logarithins). Working with the Multiplicative AHP, we 
compare the geometric means 

In in in 
atoci and En aticiPj, 

i=1 1=1 j=1 

where ay designates the impact score of alternative Ai under criterion Ci, and we choose the geometric 
mean with the highest value. The expressions in (9) cannot be interpreted as expected values. That is 
the starting point of the considerations to follow. 

(8) 

7. The relative importance of the outcome probabilities 

(9) 

The ability of human beings to estimate probabilities should not be over-estimated (see the last 
paragraph of this section). Hence, a probabilistic model for the uncertainties in an actual decision 
problem may be a hazardous tool, regardless of whether the decision makers are requested to estimate 
the probabilities numerically or in verbal terms. We propose to follow a different route, however. The 
formulas in (8) and (9) show that, mathematically, the outcome probabilities and the criterion weights 
play the same role in the aggregation procedure. We obtained a similar result in group aggregation 
procedures incorporating the relative power of the decision makers: the criterion weights and the 
power coefficients have identical positions in the structure of the aggregation formulas (Barzilai and 
Lootsma, 1994). Hence, we take the outcome probabilities to represent coefficients of importance. In 
other words, if Ai is somewhat more likely to occur than A2, we take it to be somewhat more important 
in the aggregate quantity representing the chance fork, etc. Thus,we associate the gradations of 
relative likelihood with the same scale values as the gradations of relative importance, so that 

Ai as likely as A2r 

Ai somewhat more likely than Az, 
A1 more likely than A21 

A1 much more likely than A2, 

Ai vastly more likely than A2> 

odds 1, 
odds 2, 
odds 4, 
odds 8, 
odds 16, 

= 0.50, 
Pi= ° 66. 
Pi= °•80. 
Pi = 0.90, 

= 0.95, 

P2= 030, 
P2= 033, 
P2= 0.20, 
P2= 0.10, 
P2=0.05. 

The underlying idea is that comparative verbal quantifiers like somewhat more, more, much more, and 
vastly more have numerical values which do not depend on what we compare: the relative importance 
of the criteria, the relative power of the decision makers, or the relative likelihood of the outcomes. By 
this uniformity, comparative verbal quantifiers lubricate human communication. Imagine how 
irritating it would be if we always had to use numerical values instead of vague verbal terms with a 
quantitative connotation. The fact that comparative verbal quantifiers are usually well-understood is 
an argument in favour of the hypothesis that they have imprecise numerical values with a uniform 
validity. 

With the above numerical scaling of relative likel hood we can ask the decision maker to estimate the 
outcome probabilities pi  p„ via a method of pairwise comparisons. In the basic experiment we 
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present a pair of possible outcomes to the decision maker, whereafter we can ask him/her to state 
whether they are equally likely or whether one of the two is somewhat more, more, much more, or 
vastly more likely to occur than the other. Next, we can convert the statements into elements of a 
pairwise-comparison matrix from which we eventually extract the outcome probabilities via the 
calculation of geometric row means (see also the last paragraph of section 4). 

The above method has not been considered in the literature, although the significance of verbal 
probability estimates has extensively been studied in the social sciences (Pepper and Prytulak, 1974; 
Hammerton, 1976; Budescu and Wallsten, 1985; Wallsten, Filenbaum, and Cox, 1986; Brun and 
Teigen, 1988; Teigen, 1988; Weber and Hilton, 1990; Hendrickx, 1991; Mullet and Rivet, 1991). In 
the reported experiments the respondents were usually requested to assign values to probability terms 
within the context of an uncertain situation or to select the most suitable probability term from a given 
list in order to characterize the situation. The authors discovered a high degree of context-dependent 
variability of the meaning of these terms, as well as a weak relationship between these terms and the 
actual probabilities in the given situations. Particularly Teigen (1988) reports an amazing degree of 
innumeracy and a serious lack of probabilistic thinking among the respondents when they were 
requested to estimate the probabilities of a number of mutually exclusive outcomes (this is precisely 
what a decision maker has to do in a chance fork). On the other hand, Brun and Teigen (1988) 
conclude that the interpretation variability does not seem to pose a serious communication problem. 
Pairwise comparisons of outcome probabilities were not included in these studies, however. A method 
of pairwise comparisons can be used to estimate the ratios of the outcome probabilities. Thereafter, the 
results can be normalized to guarantee that the outcome probabilities sum to 1 or to 100%. 

8. Epilogue 

In the present paper, we proposed to aggregate the multi-dimensional consequences in a chance fork 
in such a manner that the results are compatible, whether we use the Multiplicative AHP with the 
geometric-mean aggregation rule, or its logarithmic counterpart SMART with the arithmetic-mean 
aggregation rule. The aggregation can be carried out in any order: first over the impact scores and 
thereafter over the criteria, or vice versa (see the double summation in (8) and the double 
multiplication in (9)). We also made it plausible that verbal quantifiers like somewhat more,..., vastly 
more have imprecise numerical values which do not depend on the type of comparative judgement 
where they are used. Hence, they constitute a vehicle for communication, provided that we use the 
same quantifiers throughout the comparative assessment, regardless of whether we compare 
performance criteria, decision makers, or outcome probabilities. 
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