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Abstract: Two methodological byproducts of the recent intensive work within the 
Analytical Hiesarchy Process (AHP) framework are (1) the development of new (and 
refinement of some old) scaling techniques for the exhaction of the priority weights from a 
matrix of direct ratio judgments and (2) the derivation of alternative scales for the pairwise 
comparisons of the AHP. This paper compares a number of the scales in combination 
with some of the methods used to extract priority weights for three distinct types of pairwise 
comparisons in the AHP. The three types of matrices consist of betweee-attributes 
comparisons, within-attribute comparisons and global comparisons (Jensen, 1984a). The 
methods and scales are compared in terms of several criteria including the solution's 
goodness of fit, the variance and entropy of the priority weights and the number of older 
violations. Results indicate that thenature of the scale has systematic and significant ef ts 
ofvarious characteristics ofthe solution, under all scaling methods. In particular, increasing 
the spacing of the scale points tench to increase the dilErentiation among the priaity 
weights, but has a negaive eat on the solution's goodness of fit. 

Introduction 

TheAnalytic Hiemrchy Process (AHP) is a popular multi-criteria decision methodology which was devdoped 
and discussed extensively by Saaty (e.g 1977, 1980, 1986; 199Ca). Since ita introductica, the AHP has been 
applied in a wide variety of domains and disciplines (see Zaheli, 198(4 Saaty & Varga, 1987., 1991 for 
representative lists). A typical AHP analysis consists ofinn-interrelated stages: 

01 The decision problem is stnrtured as a dominance hierarchy. 
(2) Data are collected thnatgh a process of pairwise comparisons among all elements at a spedfic 

levd of the hierarchy with respect to singe, well-defined, criteria from higher levels of the 
hierarchy. 

Priority weights are extracted from each set of comparison's obtairied at stage (2) through an 
appropriate scaling/estimation procedure. 
The various weights derived at. straw (3) are combined; using a particular aggregation model, 
to yield an overall weight breach alternative ' *re 'I 

Consider, fir example, a student who is looking for a campus apartment and has to choose among one of n = 5 
alternatives. At the top level of the hierarchy lies the goal of "Selecting the best apartment". In structuring the 
problem, the student decides to nous on p = 5 sub-criteria at the second level (e.g cost, size location, 
reputation of the landlord and amenities). This hierarchy is displayed Figure 1. 

(3) 

(4) 
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Selecting Ah Apartment 

FIGURE 1. A hiezarch I for apartment selection 

At the second stage of the process the student compares,' in paitwise fishion, all attributes (wewill refer to these 
comparisons as between-attribute) as well as all apartments on each of the attributes (we label these within-
attribute comparisons). At the third stage, each of these sets of comparisons is analyzed and priaity weights 
are Waded. Let wi be the weight assigned to the itht criterion (i=1.p) at level 2, and vu be the estimated 
weight ofthejth apartment (j = 1..n) on criterion i. Finally, these estimates are combined to yield V1. the 
inirred overall weight of apartment j. This is defined as a simple weighted sum of the criterion spedfic 
priaities (over all criteria), i.e.: 

Pi 

i l (1)
A simplified approach to this decision problem (Jensen, 1984a) requires the Decision Maker (DM) to compare 
all the apartments in a pairwise fashion, consideringiall the criteria simultaneously (we will refer to these 
comparisons as global). In other words, one level of the typical AMP hielarchy is eliminated. Figure 2 depicts 
this simplified version of the ABP far the same decision.. 

Selecting An Apartment 

FIGURE 2. A global hieiarchy for apartment selection 

Two methodological byproducts of the work with Al3P are: (1) The development of new (and refinement of 
some old) scaling and estimation techniques to be used in stage 3 of the AIIP in extracting priority weights 
from a matrix of direct ratio judgments, and (2) The derivation of alternative scales to be used in the process of 
painvise comparisons (within- and between- attributes) in the All?. This paper provides a comparison of a 
number of these scales in combination with the most popular methods used to extract priority weights, by 
applying all scales and solutions to a set of judgments obtained as part of decision making study, in a 
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meaningful context. To motivate this work, we poirt out that the choices made with rega-d to the nature of the 
specific scale used in the elidtation of judgments and the scaling methodology can a t the nature of the 
eventual decisions (see Lootsma, 1993; Olsm, Flialner & Currie, 1995 forrecent examples). 

Scaling a matrix of ratio judgments: An Overview 

The ratio judgments can be represented in a squat matrix R (with elements r,i), of order n, with the following 
properties (Zr all i,j= 1..n): 

(0 Positivity: ry > 0 (ii) Reciprocity Iv= (iii) Reflexivity r11 = 1. 

Assume now a simple model relaing these overt judgments to an unobservable vector of vahEs, w = 
which represent the pricrity weights of then stimuli: 

raj= wi I v,'1. 
(2) 

Under this model, the matrix R is filly detennined by the vector w. Thus, R. is ofunit rank and, Zr any triple 
of distinct stimuli (i,j,k=1...n), we expect: 

(iv) Consistency ru • cm= rik 

(3) 

It follows that R has a single positive eigeavalue, it.=n, and n-1 zero eigenvalues (Say, 1977, 1986). 

The estimation problem is to infr the set ofweights, w, underlying a given matrix of empirical judgments, R. 
Under this model any column of it is a solution to this algebraic problem. Solutions are unique up to 

multiplication by a positive constant, so it is customary to normalize the weights by imposing the constraint 
Zw,=1. Recall however, that R is obtained from a sequence of fillible humm judgments and, therefore, 
conditions (Q-(iv) may not be satisfied. Positivity is enlaced by the nature of the scale used. Typically, 
judgments are elidted Zr n(n-1)/2 pairs of distinct stimuli and the rest of the entries are calculated such that 
conditions 00-(liz) are Satisfied. However, this does not guarantee consistency. In such cases, the researcher is 
facei with the statistical problem of estimating theweights from a redundant (and, possibly, incensistent) set of 
judgments (Weber & Borcherding 1993). Much oftheworlcin this area has been devoted to the comparison 
ofvarious estimation methods and identification orthebesfi among them. Partial reviews ofthe methods and 
some of their prorerties are bund in Eudescu (1984), Cook & Kress (1992), Golmy. & Kress, (1993) and Saaty 
& Vargas (1984). 

Saaty (1977, 1980) suggested estimating w by wft),the right eigantector of R corresponding to its largest 
eigenvalue, i.e. by solving the eigmvalue problem Rw® = Aw(r). He also provided a simple numedcal 
algorithm Zr solving this problem (we it to this as the EV solution). The incarsistency of the solution is 
measured by the indec: 

(4) 
= (A- n)/ (n -I), 

which vanishes Zr perfectly consistent matrices. Sooty and Vargas (1984) present a loss function which is 
optimized by this solution. Interestingly, Gulliksen (1959, 1975) applied a very similar procedure Zr ratio 
scaling. Cogger and Yu (1985) proposed a modification to the EV method, which is easier to comrute but 
lacks the intuitive appeal and the optimal properties of the EV. 

Jensen (1984b) described a Direct Least Squats (DLS) procedure, but it is selcbm used because it yields 
multiple solutions and the computation is diffcult (Golany & Kress, 1993). However., Chu, Kaltha & 
Spingam (1979) proposed a unique and computationally feasible Weighted Least Squats (WLS) solution, w 
C", which minimizes the quantity: 

• (5) 
es, = ru w 69), - w ,o;
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Barzilai, Cook & Golaw (1987), Crawford & Williams (1985), Crawford (987), dejmg (1984) and Lootsma 
(1993) Eva! the Loga-ithmic Least Squares (LLS) method.' The solution wu), which minimizes the quantity: 

S(2) = [ ln (ry)- In (ww; I w (g)j)] 2, 
(6) 

can be shown to consist, simply, of the geometric meats of the rows of R (it appears that Torgerson, 1958, was 
the first to establish this result). Due its simplicity, Saaty and Keams (1985) suggst using geometric mears 
as an approximation to the EV solution. Bertaise of its intuitive appeal and the ease of its computation, w (g)
has become the most popular method, next to w 

Finally, Cook and Kress (1982) Mir a compelling axianatization of this problem that Evers a Logaithmic 
Least Absolute Values (LLAV) solution. Unfcrtunately, LLAV has multiple (and diffcult to calculate) 
solutions. 

Comparisons ofthe various methods (e.g Buckscu, Zwidc & Rapcport, 1986; Golany & Kress, 1993; Saaty 
1990b; Saaty & Vargas, 1984; Takela, Cogger & Yu, 1987; 1984; Zaheli, 1986b) found that in most cases 
there is good agreement between the various solutiOns, and neither is unifirmly superior. Whenever 
discrepancies between the solutions emerge, they reflect the interaction between the different loss frictions 
employed and specific knalres ofthe data For the purpoSe of this papa, we will boo on the three fallowing 
solutions, yielding unique solutions: EV, WLS and LLS solutions (denoted ww, w(w), and Tarc3), respectively). 

Ratio judgments and the nature of thescale 

I 

&muse, all the methods described above apply to anyl matrix R satis ing requirements (O-(iii). However, 
Saaty (1977, 1980) proposed, for thecretical and practical reasons, to restrict the ratio judgments to the integers 
1-9 and their reciprocals (Donegan, Dodd and McMasterl (1992) reEr to these 17 values as "the Saaty see). To 
facilitate their use, Saaty suggested using specific verbal labels in conjunction with some of these values. 
These labels are supposed to convey therelaive importance of the superior element within each pait relative to 
the secmd element, and are to be applied bran. comparisons. In his original papa-, Saaty (1977) proposed the 
labels I: equal, 3: weak 5: essaltial (or strong), 7: ddmonstrated, 9: absolute , but others have used slightly 
different labels (see Payhlinen, Hamilainen & Salo,' 1996 and Donegan, Dodd & McMmter, 1992 far 
examples). 

In recent years, researchers have trial to determine whether Saaty's set is appropriate in temas of its size and the 
spacing of its values for all comparisons and a number of alternative scales that have been proposed. The 
earliest allusion to this possibility is due to Harker (1987), who showed that the eigmvalue method can be 
extended to the case where the observed judgments ale power transforms of the Saaty set. He hinted at the 
possibility of employing various nonlinear scales but stowed shot of endorsing a specific scale, or proposing 
a general choice criterion. 

Lootsma (1993) proposed a scale basal on the assumption that humm judgments bllow a geometric 
progression with a fixed &tor. The scale values in this system (called Ratio Estimation in Magnitudes or 
deci-Bels to Rate Alternatives whidi areNon-Dominated, or REMBRANDT for short) can be expressed as: 

(7a) 
r y = exp [ ( 4 -1)] ifrij > 1, 

r = cop( -2 ( re - 1)1 ifrti <1 
(7b) 

where ru are the values in the Saaty set and t is the pirogression factor. Lootsma reccmmends In(2)-- 0.7 
and ri = In ('12) = 0.35 as "natural" &tors for alternatives and criteria respectively. The most obvious problem 
asscciated with the use of a (relatively) small and restricted set of values is the inherent inconsistency with the 
matirmatical form, and the implications of the modell (Eqs. 3 and 4). For example, of the 969 distinct triples 
that can be generated within the Saaty set, only 45 (4.6%) saris& Eq. 4. 'fall indifference judgments, i.e. ro=1, 

'The even numbers (used to define intermediate levels) are typically not labeled. 
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are eliminated, this number is briber reduced to 20 (2.1%)! It Mows that a filly consistent judge would 
experience serious diffculties in expressing his priorities. It far example, he thinks that both rif and cm = 8, we 
would expect him to judge option i to be 64 times better thank; but this calls in values outside the restricted 
set. As a partial remedy In this problem, Donegan et at. (1992) and Dodd, Donegan & McMaster (1995) 
proposed a Modified AHP (MAUI') in which the response scale is fairly linear in the middle of the scale and 
distinctly non-linear near the end points. Of the various possible stretching Inctions they selected, quite 
arbitrarily, tank', the inverse hyperbolic tangent. The new scale is defined by: 

exp { tane [(ni - 1) I (H - 1)] } if ni > 1 
(8a) 

rw = eq, { -tanlii [(rift - 1)1 W - 1) ] } if nj < 1, 
(8b) 

where H is the "Horizon" paraneter. An horizon of 8, for example, yields H=(1 + 1443) = 9.083. This choice 
gualantees that the most extreme ratio (corresponding to rik=9) is obtined as a procbct of two ratios 
corresponding to ni = rik = 8, thus solving the problem described above. Alternatively, an horizon of 7 
implies, H=(1 + 6'42) = 9.485, guaranteeing that the most extreine ratio (corresponding to nk=9) is obtained as 
a product of two ratios corresponding to riprik=7. 

Table 1 displays values prescribed by the various scales described here fir the 1-9 range. To illustrate the 
differences between the scales, we also list three inixmative statistics breach of them: The variance of the scale 
values, V(si); the inter-quartile range of the values, /QR(sd; and the variance of the "gaps" (the distances 
between adjrnent scale values), V(sr - si.d. The latter is an index of the depature from linearity of the scale 
(note that it is 0 fir Saaty's linear scale). 

TABLE 1. Seven alternative nine-point scabs for the AHP and 
some summary statistics 

Saaty 
a= 
to 

Power RE1VIBRANDT MAHP 
a= 0.5 a =2.0 T = 0.7 r = 0.35 7-Based 8-Based 

1 1.00 1 1 1.00 1.00 1.00 
2 1.41 4 2 1.41 1.13 1.13 
3 1.73 9 4 2.00 1.27 1.29 
4 2.00 16 8 2.83 1.45 1.47 
5 2.24 25 16 4.00 1.67 1.72 
6 2.45 36 32 5.66 1.97 2.06 
7 2.65 49 64 8.00 2.42 2.60 
8 2.83 64 128 11.31 3.23 3.73 
9 3.00 81 256 16.00 5.83 13.93 

Variance of scale value= V(s)= I Zil-(Zs,)21n 1/Oz-1) 
7.5 0.45 788 7,2% 26.00 3.33 16. 

Inttrquartile range of scale values: /QR(s,) 
4 0.92 40 60 6.00 1.15 1.31 

Variance of gaps: Rs/ -ti) 
0.0 0.01 24 1,960 2.23 0.70 12.14 
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Each of these scales is a continuous and monotonic transbrrnation of the Saaty set, and each has some desirable 
properties. However, they all invoke, more or less, arbittary assumptions regading the functional form of the 
key busfarmation and/or its paraneters. Clerrly, neither is unitinnly superior to the others on normative 
grounds. Also, in the absence of comprehensive comptative studies of the various scales (see Olsm, et al., 
1995 far a recent exception) it is impossible to determine which scale its better most cases in an empirical 
scam. 

An empirical multi-criteria comparison of various response scales 

Previous empirical work has focused primarily on comparisons between scaling methods (EV, WLS, LLS, 
etc.) and has devoted only limited attention to the comparison of the various scales. In particular, there are no 
studies comparing systematically the acts ofusing diffirent scales (MAIIP, REMBRANDT, Power, etc.) in 
combination with the various solution concepts. Our study will address this issue. We will apply three 
scaling metbads (EV, LLS and WLS) to analyze a set of matrices represented in seven distinct alternative 
scales (Saray's IA scale, power transbrmations with a -1 = 0.5 and 2, REMBRANDT with r = 0.35 and 0.7, 
and MAHE' with a horizon of 7 and 8). 

The matrices consists of actual judgments obtained from judges in real decision contexts. We will analyze 
three types of matrices consisting of between-araributcs, lwithin-attribute and global comparisons, in the same 
domain. This is an intriguing comparison. From a mathematical point of view, the various matrices are 
identical, but in practice DMs may trat them differently. There are at least two justifications far this 
speculation. The first is "structural": Typically, the DM has more control over the selection of the relevant 
attributes than over the selection of the alternatives. This would suggest more homogeneity among attributes 
than alternatives. This appears to be the implicit assumption underlying Lootsma's (1993) recommendation to 
use diffirent srding brims fra the within-aratibute and between-at tributa judgments. The secaad justification 
is "cognitive". It is conceivable that DMs invoke diffirent psychological processes when comparing concrete 
alternatives versus more abstract attributes (Payne, Bettman & Johnson, 1993). 

Wherever several solutions to the same problem are compared the question of the most appropriate criterion 
arises. The problem is even more acute in this case when the solutions being compared vary along two 
dimensions. As mentioned in the introductim, various methods were designed to optimize diffirent criteria 
Obviously, none ofthe solution specific criteria, such as Saaty's ft, can be used to compare all the solutions, 
although the  indices are meaningfid in the context of a sperific method. For example, it is infamative to 
compare thee) of the various LLS solutions, but it makes little sense to calculate this measare for the EV or 
LLS solution. 

A natural and compelling criterion of comparison is the solution's eotaaial validity, i.e. its ability to capture 
and reproduce accurately the DM's "tie pricrities. This compelling universal criterion requires direct access 
to ones pretirences. Unfatunateiy, this intimation is lardy available, so most comparisons rely on alternative 
(proxy) criteria Golan), & Kress (1993) pointed out, and illustrated, the importance of considering multiple 
criteria in order to obtain a complete and comprehensive understanding of the properties of the various 
solutions. 

In the cunent study we will adopt a similar approach, and will compare the alternative solutions and scales 
along thefdlowing bur criteria: 

(1) Thevaxiance of the derived weights: 

S2('w1)=[iwi 2 - 1 /n]/(n-1 ). (9) 

(2) Thereltive entropy ofthe weights (Noble & 8anche4 1993): 

RE(w,)= 1 -1,w, In (w0 I ln (n) (10) 

Note that 0 < RE < 1 such that RE = 0 when all the weights are equal, and RE approaches 1 as one 
weight approaches I, while the other n-1 Vanish. 

The number of order reversals: The number ()leases in which one alternative is judged superior 
to another, but assigned a lower weight by the solution. We distinguish between two types of 
reversals: 
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(3) Strong Order Reversals (SCR) is a count of all cases in which r,k < rik but wj < B'1 , cr rik > cm but wj
> WI. 

(4) Weak Order Reversals (WOR) is a court of all cases in which r,k rfk but wj = w, or rik = rik but wj 
# 

Golmy & Kress (1993) analyzed a global index of ordinal consistency, TOR, which is 
equivalent to (SOR + WOR / 2). 

One would expect a "goal" solution to be highly informative dikrentiate well between then entities, and to 
have very kw order reversals (ifany) 

Method 

Subjects: The present study involved 29 students from an introductory psythology class at the University of 
Illinois at Urbaaa-Champaign that completed the study in partial fulfilment of the course requirements. 

Procedure: All subjects were asked to evaluate five hypothetical apartments that varied with respect to five 
attributes: rent, size proximity to campus, amenities and landlord reputation. The intimation concerning the 
apartments was presented to subjects in a summary packet. All comparisons were made on a nine-point scale. 

The stimuli were constructed such that no one apartment clearly dominated any of the other bur In other 
words, each apartment was thebest in the set on one attribute, secoad in the set on another attribute, third on 
one attribute, and so on. The apartments were constructed in this manner so that no one apartment could be 
obviously considered to be the "best" apartment in the global comparisons. 

Eileen subjects assessed apartments using the global version of the AR? (Jensen, 1983), and 14 subjects used 
the regular (decomposed) procedure. In the latter group the between-attributes comparisons preceded the five 
within-attribute sets ofjudgments. Experimental sessions lasted no more than onehour 

Results 

The results for each of the criteria considered were analyzed and summarized in the framewmic of a multi-
&tor Analysis of Variance (ANOVA) with the fallowing three &tors: 

(1) Scale type Saaty's 1-9, MAHP with a horizon of land 8, REMBRANDT with Tr = In (2)=0.7 and 
T2 =ln 42 = 0.35 andpower transfarmations with a = 0.5 and a = 2.0 (Ofcoune, Saaty's liner scale is 
also a member of this family of reaffirmations with a = 1). 

(2) Solution method: EV, LLS and WLS. 

(3) Type ofmatrix (global, between, and within). Note that all three types of matrices are of size n 5, 
so the results can be easily compared. A slight problem is introduced by the fact that subjects generated 
five within matrices (one fur each attribute), but only one between or global matrix. To simpli& 
comparisons across types of matrices, in all subsequent analyses the results of the within attribute 
judgments are basal on average valtes, taken across the five attributes, fur each of the analysis criteria (aid]. 
as RI, SOR, etc.). 

Somewhat surprisingly, we burd no significant differences between the results far the three types of matrices. 
Since this pattern holds fr ail the criteria considered, all subsequent figures and tables pnesent results averaged 
aacss the three types ofmatices. 

Measures of goodness of fit: Table 2 presents the mean goodness of fit fur each of the three solutions and 
scales compered. Recall that each ofthese indices is computed in a different metric and, therebre, comparisons 
between solutions are not possible. Note however, that fur each solution method the scales are ranked 
identically in terms of the goodness of their implied solutions. The seven scales can be clustered into three 
coarse but distinct groups: At one end we observe excellent levels of fit fur the two MAIIP scales (7 and 8-
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based) and the "square roof' scale; At the other extiLnie we observe extremely low levds of fit for the "squared" 
scale and the REMBRANDT scale with T1 = In (2)- 0.7. Saaty's liner scale and the REMBRANDT scale 
with T2 = In 42 = 0.35 are in between (but much clo€T to the desirable end) Note that this clustering 
conesponds with the grouping of the seven scales in terms of their IQR(si) in Table 1. 

TABLE 2. Mean (and SD) of goodness of fit by response scale and scaling method 

Response Scale EV I LLS WLS 

MAHP (8-Based) .05 (0.06)1. .34 (0.36) .10 ( 0.12) 
Power (a=0.5) .07 (0.04)1 .43 (0.24) .13 ( 0.09) 
MAHP (7-Based) .10 0.15y .58 (0.79) .16 ( 0.22) 
REMBRANDT (T=In 
42) 

.28 (0.3) 
I 

1.55 (1.11) .16 ( 0.22) 

Saaty .31 (0.20) 1.72 (0.94) .79 ( 1.00) 
REMBRANDT (v-in 2) 1.76 (2.21) 6.19 (4.45) 18.20 (98.07) 
Power (tr=2.0) 1.87 (1.70) 6.89 (3.76) 16.41 (54.01) 
Mean .63 (1.29) 2.53 (3.45) 5.21 (42.60) 

Variance and entropy of scale values: Tables 3 and 4,  present the variance and entropy of thepriority weights 
br the 21 solutions compared. The results fa- the two criteria are highly similar, so they can be discussed 
joirtly. There are several noticeable features in both tables. With only a kw mincr and insignificaat 
exceptions, the sever scales are ordered identically far the three solutions, and the three solutions are ordered 
identically breach ofthe sewn scales. Clealy, the Ey and LLS solutions are pradically identical and they 
yield slightly more homogeneous (endless infirmative)fweights than the WLS solution. The seven scales are 
clustered in the same three classes identified above: The two "stretched" scales (squared and REMBRANDT 
scale with 2/ = In (2)= 0.7 are characterized by the hightst levels of difilrentiaion between weights, the thaw 
"shrunken" scales (the two MAHP scales and the squat root scale) yield the most homogeneous weights and, 
as beim, the central cluster consists of the linear scale tnd theREMBRANDT scale with 22 = In 4,2 = 0.35. 
Finally, note that the WLS solution is considerably more sensitive to the nature of the scale used than the 
other two. 

TABLE 3. Mean (and SD) of vatiance of weights by response scale and scaling method 

Response Scale EV LLS WLS Mean 

MAHP (8-Based) 
- 

.01 (0.01) .01 (.01) .01 (0.01' 
) 

.01 (.01) 

Power (ct=0.5) .01 (.003) .01 (.003) .01 (.004 
) 

.01 (.0113) 

MAHP (7-Based) .01 (0.01) .01 (0.01) .01 (0.02 
) 

.01 (0.02) 

Saaty .03 (0.01) .03 (0.01) .04 (0.02 
) 

.03 (0.01) 

REMBRANDT (v- in 
42) 

.03 (0.01) I 
F 

.03 (0.02) .04 (0.04 
) 

.03 (0.02) 

REMBRANDT (v-an 2) .07 (0.02) .07 (0.03) .09 (0.04 
) 

.08 (0.04) 

Power (a=2.0) .07 (0.03) .07 (0.03) .10 (0.04 
) 

.08 (0.03) 

Mean .03 (0.03) i .03 (0.03) .04 (0.04 
) 
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TABLE 4. Mean (and SD) entropy of weights by response scale and scaling method 

Response Scale I EV LLS WLS I Mean I 

MAHP (8-Based) .09 (0.07) .09 (0.07) .10 (0.09) .09 ((l08) 
Power (a=0.5) .10 (0.03) .10 (0.03) .11 (0.04) .10 (0.03) 
MALIP (7-Based) .13 (0.12) .13 (0.12) .15 (0.17) .14 (0.14) 
Saaty .32 (0.10) .33 (0.10) .41 (0.14) .35 (0.12) 
REMBRANDT er=ln 
-42) 

.32 (0.14) .33 (0.15) .41 (0.20) .35 (0.17) 

REMBRANDT (r=ln 2) .76 (0.29) .77 (0.29) , .97 (0.30) .83 (0.31) 
Power (a=2.0) .75 (0.22) .79 (022) 1.04 (0 28) .86 (0.27) 
Mean 1 .35 (0.32) .36 (0.33) .45 (0.42) .39 (0.36) 1 

Order reversals: In the next analysis we focus on the ordinal properties of the data and the solutions. Table 5 
displays the number of strong order reversals. In evalunring these results, keep in mind that the maximal 
number ofreversals is a function of the matrix size In general, 0 < WOR, SOR< n(n-1)2, and in our case 0 
< WOR, SOR < 10. The most salient frakire of the Table 5 is that WLS indtres almcst twice as many order 
reversals as LLS and EV for most, and across all, scales examined. Consider now the rate of order violations 
observed fir the different scales when using EV and/or LLS solutions. In general the most accurate and fitful 
repiesentation of the original ordering of the apartments, is obtained under the fimily of power transformaions 
(3%< SOR < 3.35%), followed by the family of expmential transfoimations (i.e the REMBRANDT scales, 
where 4.33%S SOR< 4.84%), and the worst results are obtained for MABP (5.67% < SOR < 6.47%). We 
do not present a similar table of WOR because, with only two exceptions (the REMBRANDT scales analyzed 
by LLS1 all combinations ofscales and solutions yield, practically, idergical rates of order violations (between 
0.46 and 0.47, i.e. slightly under 5%). 

TABLE 5. Mean (and SD) number of strong order reversals by response scale and scaling method 

Response Seale EV LLS WLS Mean 

Powa• (cc=0.5) .30 (0.61) .34 (.67) .50 (0.76) .38 (.68) 
Saaty .30 (0.61) .32 (.61) .60 (0.80) .40 (.70) 

.Power (a=2.0) .43 (0.61) .34 (.67) 1.03 (1.07) .56 (.87) 
REMBRANDT (r=1n2) .57 (0.65) .46 (.68) 97 (1.07) .62 (.85) 
MAHP (8-Based) .65 -(0.76) .57 (.73) .78 (0.93) .64- (.81) 
MAIL? (7-Based) .43 (0.81) .65 (.78) .82 (110) .70 (.87) 
REMBRANDT (r=la42) .43 10.65) .48 (.64) 1.20 (1.24) .70 (.95) 
Mean .43 (0.68) .45 (.69) .84 (1.01) .57 (.83) 

Similarity of solution: We calculated the (Euclidean) distances between all 21 solutions. To examine the 
pattern of distances, we perfamed a Metric Multidimensional Scaling of this matrix (e.g Davison, 1983; 
Schiffman, Reynolds & Young, 1981). This analysis represents the various Soligions as points in a two-
dimensional space. The confguration ofpoirts is displayed in Figure 3. This two dimensional representation 
fits the data almost perEctly (Stress = 0.02). To facilitae the interpretation of the resulting confguration we 
added a kw sepaation lines. The first (horizontal) dimension reflects the stretching of the response scale and 
the two vertical lines sepaate between the three dusters described above with the three "shrunken scales" at the 
lefl end and the two "stretched" scales at oppcsite end. The second dimension reflects the method of solution 
used. The horizontal line sepaates between the WLS solutions (below the line) and the EV and LLS 
solutions. Note that, in most cases, the two solutions for a given type of scale are "newest neighbors" and, 
for all practical purposes, indistinguishable 
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. ............... 
Sad), (WLS) 

Rem 04.3 (WLS) Rem 0.7 (WLS) 
• 

• 
Power 2.0 ('WLS) 

-2 0 1 
Type of Scale 
Summary

The present study is unique in several ways. It is the first systematic comparison of a large number of nine-
point scales, in conjunction with several solutions. Unlike most methadological studies in this domain, 
which tend to compare solutions of artificially simulated matrices, we analyzed actual judgments obtained in 
the course of a controlled experiment. The obvious dMwback of this nut is that our results may reflect, to some 
degree, the specific ferthares of the decision problem i(the number and nature of attributes and apartments 
presented, peculiarities of the sample, etc.). On the other hand, this methadology has allowed us, for the first 
timq to contrast various characteristics ofsolutions extractedlom diferent types of matrices without invcking 
any specific assumptions. Obviously, our conclusions need to be replicated and validated with a much larger, 
and more divase, set of mabices. With this cautionary note in mind, we turn now to a snmmrty of our main 
results. 

-1 2 

The first, and most important, generalization from all our nrrlyses is that the choice of scale is of crucial 
importance. Our results indicate that all chmacteristicsli of the solutions (goodness of fit, information, number of 
order violations, etc.) were mated by the nature ofthe scale and, in some cases, the eats were quite dramatic. 
Also note that the eats generalized across the three Mettods ofsolution, so one canmt bypms theproblem of 

chocsing a scale by invoking some "scale invaiant", estimation method. Furthermora note that in all our 
analyses, the eats due to the choice of scale were more extreme than differences associated with the choice of 
the solution methad. 

The secmd condusion is that the effects ofthe scale choice are systematic and can be predicted, with some level 
of accuracy, from the nature of the scale. Recall that in all our analyses the seven scales clustered in the same 
three grows which conesponded, roughly, to the deface to which the 1-9 scale was stretchedishrunkat This 
is most clealy illustrated in the MDS,of the 21 solutions. An interesting, and unexpected, observation is that
this clustering is better precficted by the scales' IQR ratter than their variances. To understand this pattern we 
re-examined the original matrices and tabulated the fraquency ofuse of the various points on the scale. It tuns 
out that, on the average, the extreme points of the nine-point scale are unda-used by comparison with those in 
its center. Specifically, only 9.5% of the judgments are " I" or " r and 13.6% are "8'' or " r while the 
central five values (3 - 7) represent 76.9% of the tot a judgments'. Thus, it is not surprising that our results are 
better predicted by measures of scatter that underplay the effects of the extreme values. 

'This result casts some doubts on the validity of the stanclad practice of assuming in simulaion studies that 
responses are unifsmly distributed across all scale Values. 
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Interestingly, the trarsformations of the scales have opposite acts on the goodoess of fit/consistency of the 
solutions and the infrmation/variaice ofthepriority weights. In general, "stretching" the scale by increasing 
the distance between its points tends to decrease the goodness of fit but, at the same timg it increases the 
degree ofdiffirentidion between thepriority weights (obviously, "condensing" the scale, by bringing its points 
closer together, has the opposite act). In our opinion, it is impertant that uses of the AMP be sensitive to 
this tradeoff Sometimes, attempts to maximize the consistency of the judgments may induce a very 
conservative use of the scale, i.e. using only a limited set of values and/or treding them as more homogeneous 
than originally intended. Such a process may yield highly consistent, but totally uninformative solutions. A 
better steegy would be to strive ffir solutions with maximal infamation, and acceptable levds of consistency 
(e.g. a CR < 0.1, as suggsted by Saaty, 1977). 

A surprising result in our analyses is the absence of systematic differences between the the types of matrices. 
Two aspects of our study cause us to interpret this result very cautiously and reserve judgment reg,ading its 
generalizability. We designed our study such that all judgment matrices be of the same order, and all 
judgments be perfumed in a reldively short time Bowater, in many decisions thenumber of comparisons is 
larger and, typically, the number of alternatives is larger than the number of attributes considered. We suspect 
that the way in which DMs use the scale is affected by the number of entities that are being compared. Our 
secmd reservation is motivated by one aspect of the analysis. Recall, that in order to simpli e comparisons 
between the the types of matrices we averaged the within-attribute results acrcss all attributes. Closer 
inspection of the responses for the attribute-specific judgments revealed some substantial diffirences across 
attributes. For example, when subjects compared the alternatives along the most impertant attribute they used 
the high end of the scale (8 and 9) in 29.1% of the judgments and the lower end (1 and 2) in 23.6% of the 
cases. By contrast, when the alternatives are compared along the least important attribute, the two ends of the 
scale were used in 13.6% and 38.2% ofthe cases, respectively. In other words, there seems to be a propensity 
to use extreme values for important attributes and tette indifference judgments for the nomimportran ones. It 
is possible that by combining together all the attributes somereal eats were obscured. We plan to follow up 
this point with more powerful and sensitive analyses in future studies. 

Although our primary interest was in a comparison ofthescaks, we craft ignore the implications of ourresults 
to the long controversy regading the choice .of the...appropriate method of scaling. Consistent with many 
previous studies (e.g. Golmy & Kress, 1993); we found that idthevast majaity.of cases the EV and LLS -are, 
practically, indistinguishable, In our opinion, they are supedorto WLS in at least two important senses. t 
First, they are more likely to preserve the ordinal properties of the original judgment (see also Goias), & Kress, 
1993, on this point). Second, and more in, line with the focus of our wolic, WLS was shown to be more 
sensitive to nature of the scale used, fir all the criteria considered. 
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