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Abstract

Sensitivity analysis in ANP has several issues surrounding it. In this
paper a new theoretical basis for sensitivity analysis is presented which
simplifies sensitivity as well as providing a more useful analysis.

1 Introduction

The goal of sensitivity analysis is to discover how changes in the numerical in-
formation in an ANP model effect the scores for the model’s alternatives. The
numerical data involved could be information directly supplied to the model,
such as pairwise data. On the other hand we could also want to analyze sen-
sitivity to calculated data, such as local priorities, or global priorities. These
methods do indeed show us certain levels of sensitivity. However, for the vast
majority of single level ANP models, they either report useless information
(tweaking global priorities is only useful in multi-level models at best), or no
sensitivity (a single pairwise comparison has no effect in a well connected ANP
model, likewise a single local priority has no effect in a well connected ANP
model).

In this paper we construct a new type of sensitivity analysis that gives rise to
useful sensitivity in single level ANP models, where other methods have failed.
We will use the terminology row sensitivity for this new kind of analysis. We
will show that, if we accept certain axioms about preserving ANP structure, row
sensitivity as outlined here, is the only kind of calculation we can perform (that
is, any other analysis will corrupt the basic structure of the model, rendering
the results less meaningful).

We feel obliged to note that, although we speak throughout the paper of
single level ANP models, row sensitivity is equally useful in multiple level ANP
models. In fact, it serves, in many respects, as a superior replacement to global
priorities sensitivity analysis, in that the former preserves the overall structure
of the model in a way that the latter can not.
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1.1 Sensitivity in AHP Trees

As a way of introducing and motivating our topic and procedure let us review
the basic idea and result of standard sensitivity analysis in the case of AHP
trees. Although the AHP tree case does not necessarily show us the way we will
calculate, it does show us the kind of information we would like to glean from
sensitivity.

In typical AHP tree sensitivity, we take the local weights for the collection
of criteria under a common parent, and drag up or down a particular criteria’s
weight. Since we are dealing with a tree, a criteria’s local weight and global
weight are essentially the same (a simple rescaling is the only change that hap-
pens to go from local to global). By changing said local weight (or weights)
we get new local priorities for the criteria in question, and resynthesize to get
new scores for our alternatives. By dragging a single criteria’s priority towards
one or towards zero, we get an idea of the influence that criteria has on our
alternatives.

Notice, in the process of doing AHP tree sensitivity we need only choose
the criteria we wish to analyze, and we are then able to see the impact of that
criteria on the alternatives. We would like to be able to do a similar analysis in
the ANP case.

1.2 Prior Existing ANP sensitivity ideas

We have already briefly mentioned most of the prior existing ANP sensitivity
ideas. However we would like to collect them together here, and explain why
they are unsuitable analogues of AHP tree sensitivity.

Pairwise comparison sensitivity In this analysis, a particular entry in a
pairwise comparison matrix (and it’s reciprocal on the other side of the
matrix) is changed, new local priorities are calculated, and the alternatives
are resynthesized accordingly. In order to do this a with respect to node
must be chosen, and two other nodes must be chosen. Simply by virtue of
all of these choices, this is not a sufficient analogue of AHP tree sensitivity.
In addition, nothing useful is found in such analysis, since one pairwise
comparison essentially never has an impact (except in a few degenerate
cases).

Local priority sensitivity This sensitivity amounts to changing a single entry
in the unscaled supermatrix, recalculating the limit matrix, and resynthe-
sizing to arrive at alternative scores. In order to do this analysis we must
choose a with respect to node (the column of the supermatrix) as well as
the row (the node’s whose priority we are changing).

This method has two shortcomings. First we are not analyzing the sen-
sitivity of a single node but rather of the node with respect to another
node. Secondly, in nearly all cases, there is simply no sensitivity to witness
(much as in the case of pairwise comparison sensitivity).

2



Global priority sensitivity In this analysis, we tweak the global priority of
a node (that is, after the limit matrix calculation has already occurred).
This analysis proceeds by calculating the limit matrix, deriving global
priorities from that limit matrix, then tweaking a node’s global priority
(and rescaling the others), and then resynthesizing. This is problematic in
several ways. First, if the model is a single level all calculations are done
at the limit matrix level, and we are tweaking after that point so nothing
useful has occurred. Second, even if the model is multiple level, by tweak-
ing the global priority of a node after the limit matrix calculation our
sensitivity analysis lies outside of much of the ANP theory, and thus feels
somewhat foreign. It does have the advantage of showing the sensitivity
of the model to a particular node, but at the cost of only working for
multiple level models, and working outside of the context of the majority
of ANP theory.

1.3 Proposed solution

The problem we have is to get an ANP analogue of AHP tree sensitivity that
yields similar results. The proposed solution can be thought of as taking the
global priorities approach but moving it before the limit matrix calculation. Or,
if one prefers, it can thought of as simultaneously performing local sensitivity
analysis on every column.

1.3.1 Idea

The basic idea is to change every entry in the scaled supermatrix (and then
rescale the rest). We could, in fact do the same thing on the unscaled super-
matrix, and the vast majority of the description presented below stays identical
(the only difference being one rescales only the rest of the priorities in the given
cluster, instead of the entire column).

1.3.2 Difficulty

The difficulty we face is determining how much to change each entry in the
given row of the supermatrix by. In order to keep the analogy with AHP tree
sensitivity, we would like to have a single parameter p that we vary between 0 and
1 (corresponding to the local weight in AHP tree sensitivity). By changing that
single parameter we would be changing all of the entries in the given row of the
scaled supermatrix (again we could do the same in the unscaled supermatrix,
the difference in results is that one tells us how sensitive we are to the node
globally as opposed to how sensitive we are to the node when viewed as a part
of its parent cluster).

The question becomes, for each value of the parameter p, what should we
change the entries in the given row of the scaled supermatrix to? There are
many choices possible, however we will see that up to continuous change of the
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parameter there is only one choice which will preserve the “ANP structure” of
the model 1.

2 Supermatrix Row Perturbations which Pre-
serve ANP Structure

The idea behind row sensitivity is to perturb or change each entry in a given
row of the scaled supermatrix. Of course, when we perturb a single entry in
the supermatrix we must correspondingly change the rest of the entries in that
column, so that the column still adds up to one. However, the “main change”
in a column is to the entry in the given row, and the changes to the rest of the
column are mere consequences of that original entry that is changed. Since we
will be changing each entry in a row, we will be changing the rest of the entries
so that the columns still add to one (by simply rescaling the rest of the entries
in that matrix). In order to precisely describe what preserving ANP structure
means, we need a bit of notation.

2.1 Notation and Definitions

We will use W for the weighted supermatrix, Wi,j for the entry in the ith row
jth column of the weighted supermatrix. We have already mentioned that we
want to use a single parameter p between 0 and 1 to describe the perturbation
of our supermatrix. Let us define precisely what we mean now.

Definition 1 (Entry perturbation). Let W be the weighted supermatrix of an
ANP model. We say W ′ is a perturbation of W in row i column j if:

• W ′ is stochastic of the same dimensions as W

• The columns of W ′ agree with the columns of W except for possibly the
jth column.

• The ratios of the entries in the jth column of W ′ are the same as those of
W except possibly the ratios involving the ith row.

Note 1. The above definition essentially says we have changed the entry in row
i column j, and rescaled the remainder of the column so that the column still
adds to one.

Definition 2 (Matrix space). Let Mr,k(X) be the space of matrices with entries
in the space X.

Definition 3 (Row perturbation). Fix an ANP model (a single level of it) and
let W be its weighted supermatrix (whose dimensions are n × n). A family
of perturbations of W in the rth row is a continuous function f : [0, 1] →
Mn,n([0, 1]) with the following properties.

1This fuzzy terminology will be made precise in the coming pages. The basic idea of
preserving “ANP structure” is that we do not change the node connections, and we leave
ratios of local priorities as unchanged as possible.
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1. f(p) is a stochastic matrix.

2. For some 0 < p0 < 1 we have f(p0) = W . This p0 is called the fixed point
of the family.

3. f(p) is the result of a sequence of perturbations of W in row r column j
as j ranges from 1 to n.

When the family of perturbations is clear, we will write W (p) for f(p), abusing
notation in order to gain readability.

Definition 4 (Trivial Column). Fix an ANP model (a single level of it) and
let W be its weighted supermatrix (whose dimensions are n × n). Also fix a
row 1 ≤ r ≤ n to consider a family of row perturbations on. A column j of
W is called a trivial column for row perturbations on row r (or simply a trivial
column) if either the column is zero, or the column has all zero entries except
the rth entry is 1. A column is call non-trivial if it is not trivial.

2.2 Basic properties desired

There are two basic properties we would like a family of perturbations of the rth

row of the weighted supermatrix to have. They deal with the end points of the
family as well as the general flow of the family. We will describe the properties
as well as the reason for wanting those properties now.

Let’s consider W (0). In considering the AHP tree analogy, the parameter
p corresponds to the local weight of our node/criteria. So W (0) should reflect
what happens when the rth node is completely unimportant. In other words it
should set all of the local weights for the rth criteria to zero, i.e. make the rth row
of the supermatrix zero. The only question is what we should do with columns
that have the rth row’s entry as a 1 (and thus the rest in that column are zero).
By continuity considerations we want those columns to remain unchanged. Thus
any trivial column should remain unchanged.

Next let’s consider W (1). Again considering the AHP tree analogy, the
parameter p being set to one places all importance on the node/criteria in
question, and zeros out the rest. So the matrix W (1) should have the rth row
with 1’s in any column that had non-zero entries in W (the columns that had
the rth row with a zero means there was no connection there, so we should not
change those values), and the rest remain zero.

Lastly in the AHP tree case, as the parameter increases the local priority
(and hence global priority) increases. Because of the nature of feedback within
an ANP model we cannot guarantee this global priority behavior. However
we would like to have, as p increases the local priorities for the rth criteria to
increase (i.e. the values in that row of the weighted supermatrix). In other
words the coordinate functions for the rth row of the family of matrices W (p)
are increasing functions.
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2.3 Maintaining proportionality

We reach what is perhaps the most important consideration about how a family
of perturbations of the weighted supermatrix in a given row should behave.
There are, of course, many ways we could perturb the values in a given row,
based on the information of a single parameter (we could, for instance set all of
the entries in that row to that parameter value). However not many of these
choices would preserve the overall ANP structure, and this is what we consider
now.

The key idea is that we need to maintain proportionality of elements in the
supermatrix throughout our family as much as possible. We cannot keep all of
the proportions since that would mean the matrix would never change (since
the matrix needs to remain stochastic). In fact motivation comes from looking
at the row we are perturbing and our axioms that W (0) should zero out that
row and W (1) should place all importance on that row.

First consider the information that W (0) must zero out that row. By con-
tinuity this means that as p → 0 W (p) should go to W (0). Thus, however we
change that row we must make sure that as p→ 0 that row goes to zero. If we
force ourselves to maintain proportionality in that row no matter what value p
has (at least for p close to zero) we can achieve the desired result. For instance
think of p as a scaling factor to multiply the row by. Then as p → 0 that row
does go to zero, and maintains proportionality. So it seems we can hope to have
proportionality maintained in the row in question for small values of p.

However, considering W (1) shows this is not possible for values of p close
to 1. For, if we maintain proportionality in that row, that row cannot go to 1
(in fact the best it could do is have one entry go to one, and the rest would
maintain their proportionality to that one). Since it is not possible to maintain
proportionality in that row and have that row go to one, we must look elsewhere
for a position to maintain proportionality in. If we force the other rows to
maintain their proportionality when p is close to 1, it turns out to maintain the
proportionality of the distance from 1 of the entries in our row (which is a useful
proportionality to maintain).

Thus the proportionality we expect to maintain depends on the values of
our parameter p. Although no formal proof has been yet given that these
proportionalities are possible we hope to have shown at least why we cannot
have proportionality in the row in question as p goes to 1.

2.4 Formal definition of the main concept

We will now collect the various ideas presented above into a single definition for
the kind of object we wish to study and use to extend the concept of AHP tree
sensitivity to the ANP world.

Definition 5 (Family of row perturbations preserving ANP structure). Fix an
ANP model (a single level of it) and let W be its weighted supermatrix (whose
dimensions are n×n). A family of perturbations of W in the rth row f : [0, 1]→
Mn,n([0, 1]) preserves the ANP structure if:
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1. Trivial columns remain unchanged throughout the family. In other words
if the jth column of W is trivial then the jth column of f(p) equals the jth

column of W for all 0 ≤ p ≤ 1.

2. If Wr,i is zero then the ith column of f(p) = W (p) equals the ith column
of W for all p (that is, if there is no connection from i to r we will not
create one ever in the family).

3. If Wr,i is non-zero and the ith column of W is non-trivial, then W (p)r,i is
not zero except for p = 0 (that is the connection from i to r is not broken
except when p = 0 and all influence is removed from node r).

4. If p0 is the parameter for which W (p0) = W then for p < p0 W (p)’s rth

has the same proportionality as W ’s rth row. That is, for p < p0 we have

Wr,i

Wr,j
=
W (p)r,i
W (p)r,j

where these fractions are defined.

5. For p > p0 we have for all i, i′ 6= r:

Wi,j

Wi′,j′
=

W (p)i,j
W (p)i′,j′

where these fractions are defined. That is maintain proportionality off the
rth row.

6. We say that the family is increasing if W (p)r,i is an increasing function
if Wr,i is not zero, and is the constant function zero if Wr,i = 0.

With this we have a definition of a family of row perturbations that preserve
ANP structure, and good reasons to accept this as useful definition. However
we do not yet know if such families exist.

2.5 Existence

In fact such families do exist, as we shall now prove. First we should define our
proposed family, and then prove it preserves the ANP structure.

Definition 6. Fix an ANP model (a single level of it) and let W be its weighted
supermatrix (whose dimensions are n × n), and fix r an integer between 1 and
n. Pick 0 < p0 < 1, and define FW,r,p0

: [0, 1] → Mn,n([0, 1]) in the following
fashion. Firstly leave trivial columns unchanged throughout the family. Next, if
0 ≤ p ≤ p0 define FW,r,p0

(p) by scaling the the rth row by p
p0

, and renormalizing

the columns. If p0 ≤ p ≤ 1 define FW,r,p0
(p) by leaving alone columns of W for

which Wr,i = 0 and scaling all entries in the other columns, except for the entry
in the rth row, by 1−p

1−p0
.
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Note 2. We must be a bit careful as we have defined the above function in two
ways for p = p0. However using either formula we get the result of W when we
plug in p = p0 so that the above function is well defined.

Note 3. The above function is a piecewise defined function whose pieces are
linear, and they agree at the intersection of the two regions of definition. Thus
the above function is continuous.

Theorem 1. Fix an ANP model (a single level of it) and let W be its weighted
supermatrix (whose dimensions are n×n), fix r an integer between 1 and n, and
pick 0 < p0 < 1. Then FW,r,p0

(p) is a family of row perturbations preserving
the ANP structure.

Proof. It is clear that FW,r,p0(p) satisfies the three conditions for being a family
of row perturbations, thus we need only demonstrate that it preserves the ANP
structure. However the preservation of ANP structure simply follows from the
definitions. In addition it is clear that FW,r,p0

(p) is increasing as well.

2.6 Uniqueness

Thus we have a family of row perturbations which preserves the ANP structure,
which is useful. However, what is surprising is that this family is essentially the
only family preserving the ANP structure, up to change of parameter. Let us
make this precise.

Theorem 2 (Uniqueness). Fix an ANP model (a single level of it) and let
W be its weighted supermatrix (whose dimensions are n × n), fix r an integer
between 1 and n, and pick 0 < p0 < 1. Let f(p) be a family of row perturbations
preserving the ANP structure with p0 as the fixed point. Then there exists a
continuous map h : [0, 1]→ [0, 1] so that

f = FW,r,p0
◦ h

Proof. We will define h(p) piecewise, first for 0 ≤ p ≤ p0 and then p0 ≤ p ≤ 1.
Let 0 ≤ p ≤ p0. Then f(p) preserves ratios in the rth row, i.e. the rth row is a
scalar multiple of the rth row of W , let j be a column for which Wr,j 6= 0. We
can calculate that scalar as

f(p)r,j
Wr,j

and thus we define

h(p) = p0 ·
f(p)r,j
Wr,j

.

Since f is continuous its (r, j) entry function is continuous and thus h is contin-
uous. Notice that h(p0) = p0, and that we can determine FW,r,p0

◦ h(p)r,j using
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the following sequence of equalities.

FW,r,p0
◦ h(p)r,j = FW,r,p0

(h(p))r,j

= FW,r,p0

(
p0 ·

f(p)r,j
Wr,j

)
= Wr,j ·

(
p0 ·

f(p)r,j
Wr,j

)
· 1

p0

= f(p)r,j

Since f and FW,r,p0
preserve the ANP structure and agree in the (r, j) entry,

they agree in all entries. Thus for 0 ≤ p ≤ p0

f(p) = FW,r,p0
◦ h(p).

Next for p0 ≤ p ≤ 1 we note that f(p) preserves the ratios of the rows other
than r, since f preserves the ANP structure. Let Wi,j be a non-zero entry with
i 6= r. Since f preserves the ratios of rows other than the rth row, we have a
simple scalar multiplication of those rows. We can calculate that scalar as

f(p)i,j
Wi,j

and we define h(p) for p0 ≤ p ≤ 1 as

h(p) = 1− f(p)i,j
Wi,j

(1− p0) .

Notice that h(p) as defined above is continuous since f ’s entries are contin-
uous and that h(p0) = p0 (thus both definitions agree at their overlap of p0, so
there is no ambiguity in our definition). Furthermore we can see the following
equalities.

FWr,p0
◦ h(p)i,j = FW,r,p0

(h(p))i,j

=
1− h(p)

1− p0
Wi,j

=
1−

(
1− f(p)i,j

Wi,j
(1− p0)

)
1− p0

Wi,j

=

f(p)i,j
Wi,j

(1− p0)

1− p0
Wi,j

= f(p)i,j

Since f and FW,r,p0 preserve the ANP structure and agree in the (i, j) entry,
they agree in all entries. Thus for p0 ≤ p ≤ 1

f(p) = FW,r,p0
◦ h(p).
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Thus we have demonstrated h : [0, 1]→ [0, 1] which is continuous (since the
piecewise parts are continuous and they agree on the overlap) which satisfies

f(p) = FW,r,p0 ◦ h(p).

for all 0 ≤ p ≤ 1.

Remark 1. The previous theorem states that there is only one way to do row
sensitivity in way that preserves the ANP structure (up to change of parameter).

3 Example calculations

So that we may see how these results play out, let us consider a few examples
calculated by hand.

3.1 Two node model

This model contains just two nodes in a single cluster, fully connected. The
weighted supermatrix (which is really just the unweighted supermatrix in this
case) is

W =

[
.2 2

3
.8 1

3

]
With this supermatrix we get the normalized priority vector for the alternatives
(which we denote as A):

A =

[
0.45
0.54

]
We will do row sensitivity on the second row, using parameter values of .1 and
.9 (which corresponds to pushing down the priority of the second row for p = .1
and pushing it up for p = .9). For simplicity we will use p0 = .5.

As a matter of notation we will use Ap to denote the new synthesized nor-
malized values of the alternatives when we do row sensitivity with value p, and
Lp for the limit matrix when the parameter is p.

p=0.1: Let us calculate FW,2,0.5(0.1) first (and then we will need to calculate
the limit matrix). Using our formula we will scale row 2 by .1/.5 = .2.
Thus row two of our new matrix will be .16 and .2/3. Normalizing our
columns we get the first row is .84 and 2.8/3. Thus

FW,2,.5(0.1) =

[
.84 2.8/3
.16 .2/3

]
.

The limit matrix is therefore:

L0.1 =

[
0.853659 0.853659
0.146341 0.146341

]
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which gives the new synthesized priorities of

A0.1 =

[
0.853659
0.146341

]
which has substantially reduced the score of the second alternative from
the original values. This is what we would expect by analogy with AHP
tree sensitivity. We have decreased the importance of the second alterna-
tive prior to calculating the limit matrix, and thus its overall priority has
decreased after calculating the limit matrix.

p=0.9: Again let us calculate FW,2,0.5(0.9) first and then proceed to the limit
matrix. Using the definition we will scale the rows other than 2 (i.e. row
one) by 1−0.9

1−0.5 = 0.2. Thus the first row becomes .04 and .4/3. Renormal-
izing the columns yields the second row as .96 and 2.6/3. Thus

FW,2,0.5(0.9) =

[
.04 .4/3
.96 2.6/3

]
.

The limit matrix is therefore:

L0.9 =

[
.1219512190402955 .1219512195777367
.8780487809597046 .8780487804222634

]
which gives the new synthesized priorities of

A0.9 =

[
.121951
.878049

]
which has substantially increased the score of the second alternative from
the original values. Again this result is as we would expect.

3.2 Four node model

This is a model with two clusters each of which have two nodes (thus four nodes
altogether). There is a single criteria cluster, and the alternatives clusters. In
the criteria cluster there are criteria A and B. In the alternatives cluster are
two nodes, alt1 and alt2. Everything in the model is fully connected and the
weighted supermatrix, and alternative scores are as follows (the order of the
nodes being A, B, alt1, and finally alt2).

W =


0.375 0.20 0.175 0.10
0.125 0.30 0.325 0.40
0.400 0.05 0.275 0.15
0.100 0.45 0.225 0.35


A =

[
0.388144
0.611856

]
As before we will set p = 0.1 first, then p = 0.9, and we will work with criteria
B sensitivity (i.e. row 2) and p0 = 0.5.
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p=0.1: First we calculate the new matrix. For p = 0.1 we scale row 2 by
0.1/0.5 = 0.2, and then renormalize. We get

FW,2,0.5(0.1) =


.417857 .268571 .242407 .153333
0.025 0.06 0.065 0.08
.445714 .067143 .380926 .536667
.111429 .604286 .311667 0.349993


The limit matrix result is:

L0.1 =


.2572 .2572 .2572 .2572
.0598 .0598 .0598 .0598
.3248 .3248 .3248 .3248
.3583 .3583 .3583 .3583

 .
This yields the following synthesized priorities for alt1 and alt2.

A0.1 =

[
.4758
.5242

]
p=0.9: Let us calculate the new matrix. Using our formula we will multiply

rows 1, 3, and 4 by 1−0.9
1−0.5 = 0.2, and then change row 2 to normalize the

columns. This gives us

FW,2,0.5(0.9) =


.075 .040 .035 .020
.825 .860 .875 .880
.080 .010 .055 .030
.020 .090 .045 .070


the limit matrix is thus

L0.9 =


.039761 .039761 .039761 .039761
.863877 .863877 .863877 .863877
.015210 .015210 .015210 .015210
.085178 .085178 .085178 .085178


and finally the synthesized priorities are

A0.9 =

[
.1515
.8485

]

4 Alternate definition of FW,r,p0(p)

The definition given previously for the family of row perturbations FW,r,p0
(p) is

useful conceptually; however, there is another useful way of defining that family
(a different way to write the formula) that only talks about changing the rth

row and rescaling the rest of each column. We describe that formula in terms of
the theorem below (stating that the new formulation is the same as our original
formulation).
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Theorem 3. Fix an ANP model (a single level of it) and let W be its weighted
supermatrix (whose dimensions are n×n), and fix r an integer between 1 and n.
Pick 0 < p0 < 1. We can define FW,r,p0

: [0, 1] → Mn,n([0, 1]) in the following
alternate fashion. First leave trivial columns unchanged throughout the family.
Next, for all 0 ≤ p ≤ 1 we define FW,r,p0

(p) by changing the rth row and then
rescaling the remaining entries in the columns so that the columns continue to
add to one. For 0 ≤ p ≤ p0 we change the rth by scaling it by p

p0
. For p0 ≤ p ≤ 1

we change the entries in the rth row by the following formula

FW,r,p0
(p)r,j = 1− α (1−Wr,j)

where α = 1−p
1−p0

.

Note 4. The above formulation implies that, for p0 ≤ p ≤ 1 we scale the
distance from 1 of the entries in the rth row by α = 1−p

1−p0
.

Proof. Our new definition agrees with the original definition for 0 ≤ p ≤ p0, so
we need to only consider the other case. Thus let p0 ≤ p ≤ 1. We have the
formula

FW,r,p0(p)r,j = 1− α (1−Wr,j) .

Fix a non-trivial column j, we need to show that FW,r,p0(p)i,j = 1−p
1−p0

Wi,j =
αWi,j for all i 6= r to prove our definitions coincide.

Let βj be the scaling factor we scale the entries of the jth column by (except
for the rth row). Then FW,r,p0

(p)i,j = βWi,j . Since the jth column of FW,r,p0
(p)

adds to one, we get the following sequence of equalities.

1 =

n∑
i=0

FW,r,p0(p)i,j

= FW,r,p0
(p)r, j +

∑
i 6=r

FW,r,p0
(p)i,j

= 1− α (1−Wr,j) +
∑
i 6=r

βjWi,j

= 1− α (1−Wr,j) + βj
∑
i6=r

Wi,j

= 1− α (1−Wr,j) + βj (1−Wr,j)

The last equality coming from the factor that the columns of W add to one.
We can continue in the following fashion.

1 = 1− α (1−Wr,j) + βj (1−Wr,j)

α (1−Wr,j) = βj (1−Wr,j)

α = βj

Thus we are rescaling the entries of the jth column (except the entry in the rth

row) by α, which completes the proof.

Note 5. We have included this formulation, in part, because this is the formu-
lation used in the Super Decisions engine.
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5 Future directions

The concept of row sensitivity opens up many avenues of analysis not previously
available in ANP theory. For instance, there is influence analysis, i.e. which
node is most influential to the decision the ANP model is making. Another ex-
ample would be perspective analysis, which tells how important the alternatives
would be if a single node was the only one in the model with weight (however
we do not forget the rest of the model in this calculation). Yet another example
is marginal analysis, that is, what are the rates of influence of each of the nodes
(a derivative calculation). A final example applying row sensitivity would be
search for highest rank influence (that is, which node causes rank change first).‘
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