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ABSTRACT 
 

A problem of synthesizing the local preferences into global priorities in multi-person decision making by 
the hierarchy structure is considered. Classic methods are tried together with new developed techniques, 
including multi-response multiplicative mode, three-dimensional eigenproblem and its simplification in 
parallel proportional profile estimation, orthogonal regression, nonlinear local evaluation, linear and 
nonlinear synthetic hierarchy optimizing procedures. Various marketing research data with different 
numbers of criteria, sub-criteria, alternatives, and respondents have been used to produce results by a 
dozen techniques. Most of the estimations yield rather similar global priority vectors with comparable 
ranks of the items. The best methods correspond to nonlinear estimations. The analysis performed helps 
in practical managerial decisions. 
 
Keywords: AHP, multi-person decision making, complex hierarchy, global priority synthesis, optimizing. 
 
 
1. Introduction 
Analytic Hierarchy Process (AHP) is a methodology and a group of methods for multiple criteria decision 
making suggested and developed by Thomas Saaty (Saaty, 1977, 1980, 1994, 1996, 2000). AHP has been 
continuing to grow through the efforts of hundreds of authors in thousands of papers, and nowadays tons 
of theoretical and applied works on AHP can be found on the Internet, in books, and in professional 
journals in practically any area of human interests and activities (for instance, Golden et al., 1989; Wasil 
and Golden, 2003). Generally speaking, AHP is related to the family of Thurstone, Bradley-Terry, and 
other models of priority estimation via paired comparisons (MakKay et al., 1996; Lipovetsky and Conklin, 
2001). But AHP has its own specifics in eliciting data from one or many experts by pair-wise ratio scales, 
arranging a hierarchical structure of comparisons by criteria, sub-criteria, and among alternatives, finding 
vectors of priorities within each group of the compared items, and composing local preferences by sub-
criteria and criteria of all hierarchy levels to get the synthesized global priorities among all the 
alternatives (Aczel and Saaty, 1983; Saaty and Kearns, 1985; Saaty and Vargas, 1984, 1994). Many 
specific modifications of AHP suggest optimizing procedures (Lipovetsky, 1996, 2005; Gass and Rapcsak, 
2004), group evaluations by expert boards or multiple respondents (Basak and Saaty, 1993; Barzilai and 
Lootsma, 1997; Lipovetsky et al., 1997), statistical properties (Lipovetsky and Tishler, 1999), and robust and 
fuzzy priority estimations (Lipovetsky and Conklin, 2002; Enea and Piazza, 2004). 
 
The current work studies various techniques of synthesizing global priorities in multi-person evaluations. 
A dozen classic and modern AHP tools have been implemented and compared. Besides the more known 
in group decision making multiplicative approach, I considered eigenvector analysis for three-
dimensional matrices of pairwise ratios by many experts. These kinds of eigenproblems in factor analysis 
had been studied in (Tucker, 1966; Law et al., 1984). This approach corresponds to the extension of the 
least squares AHP technique to the case of many experts, can be reduced to a non-linear eigenproblem, 
and simplified to the so called Parallel Proportional Profiles technique (Cattell, 1944; Lipovetsky, 1994; 
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Lipovetsky and Tishler, 1994). Another approach utilizes a so called orthogonal regression technique 
constructed by the minimum distance of the observations to the theoretical surface (Maronna, 2005). It is 
also possible to approximate the original ratio relations in nonlinear priority modeling (Lipovetsky and 
Tishler, 1999). All these approaches at first produce the local preferences in group decisions, then convert 
them into the global priorities. Depending on the type of normalization (conventional or ideal) used for 
the local preference vectors, the global priority vectors can differ even for the same estimation technique. 
Besides these methods, simultaneous estimation of the global priority by all the data on the alternative, 
sub-criteria and criteria paired comparisons is employed via the so called synthetic hierarchy method 
(Lipovetsky, 1996, 2009). The numerical comparisons demonstrate that most of the methods produce 
similar vectors of preferences and their ranks, but the nonlinear estimations always have higher 
characteristics of the quality of fit, and can better serve the practical aims of managerial decision makers. 
 
 
2. Local and global priority vectors by one expert data 
Consider several methods and their sub-modes for the synthesized global priority evaluation. 
 
2.1 Classical AHP eigenvector 
 At first let us briefly describe the main AHP relations. Each ij-th element in an AHP matrix is defined as a 
ratio of theoretical priorities wi and wj of the i-th and j-th items: 

                                                         .                                                             (1) 

Multiplying matrix (1) by the vector w of priorities , yields the equalities: 

                                                          .                                                                                       (2) 

An elicited empirical pairwise ratios AHP matrix is 

                                        ,                                                                      (3) 

with the transposed-reciprocal elements . By the pattern (2) the AHP relations for priority 
estimation are presented as an eigenproblem for the matrix (3): 

                                                         .                                                                                       (4) 

The eigenvector  for the maximum eigenvalue  serves as the AHP estimate of the priorities. In some 
applications a vector of the transposed matrix is considered in the problem , that is interpreted 
as a vector of anti-priorities. An AHP priority vector is usually normalized by the total of its elements 
equals one – this is the conventional mode; or the vector is divided by its largest element – that is the so 
called ideal mode: 

                                                .                                                                         (5) 
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2.2 Multiplicative estimation 

Various other estimations of priority vectors are also known in the AHP. For instance, the multiplicative 
estimation is based on geometric means of the elements in each row of a pairwise ratio matrix. From the 
theoretical structure (1) we see that a product of the elements in an i-th row is proportional to . So 
priority estimation by an empirical matrix (3) can be: 

                                                   ,                                                                                   (6) 

with additional normalizing by one of the modes (5).  
 
2.3 Least Squares 

The Least Squares approach corresponds to the singular value decomposition technique, and yields the 
eigenproblems: 

                                           ,                                                                        (7) 

where the main vector  estimates priorities, and the dual vector  estimates anti-priorities. 
 
2.4 Synthesizing estimation 

In a more general case the AHP considers a hierarchy structure of criteria – subcriteria – alternatives, or 
even with more intermediate levels. The main goal consists in comparison of all the alternatives. The 
AHP estimates global priorities of the alternatives by synthesizing their local priorities with preference 
weights of the subcriteria and criteria. Let us denote a matrix P of the primary criteria level ( j =1,…, q – 
number of criteria), the matrices S(k) of the secondary level of subcriteria (where k = 1,…, mj – the 
number of subcriteria within each criterion), and the matrices T(nk ) of the tertiary level of alternatives (t = 
1,…, nk  – the number of alternatives within each k-th subcriterion). AHP solves an eigenproblem of the 
kind (4) for each of such matrices: 

                      .                                           (8) 

In (8) the eigenvalue and eigenvector of the primary criteria level are denoted as  and , of the 
secondary level – as  and  for each k-th subcriterion, and for tertiary level – as  and  
for a set of alternatives within each subcriterion, respectively. In each of the problems (8) we find the 
main eigenvector related to the largest eigenvalue, and use it as the estimate of the local priorities. Then 
we synthesize them into the global priorities taking each vector of local preferences, multiplying it by the 
corresponding element in the vector of the parent subcriterion and by the corresponding element in the 
vector of the parent criterion. Stacking all the weighted vectors of alternatives into one vector and 
normalizing it produces a global priority vector :  

                  ,                                       (9) 
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where a system of n alternatives are evaluated by each of m subcriteria, and q criteria. In (9), the columns 
correspond to the alternatives' priority vectors with elements  of t-th alternatives related to the k-

th parent subcriterion and j-th criterion,  are the subcriteria's priority vectors within each j-th criterion,  
and the elements  are the criteria priorities. In a more complex structure of hierarchy, not all the 
alternatives but their different subsets can be estimated within each subcriterion, the same well as specific 
subsets of the subcriteria can be estimated within each criterion. Then column-vectors in the expression 
(9) should be arranged with zeros in place of the elements corresponding to the absent alternatives within 
subcriteria, or the absent subcriteria within the criteria. 

 
The conventional or ideal mode (5) is used for all the vectors in the synthesizing process, and the 
resulting global priorities are related to the corresponding mode. In contrast to local preferences, the ranks 
of the global priorities can depend on the mode applied in the normalization of the local vectors. 
 
 

3. Local and global priority vectors in multi-person data 
Consider synthesizing global priorities by a hierarchy structure evaluated by many experts. At first let us 
describe the priorities obtained for each core of a hierarchy, when vectors of alternatives, subcriteria and 
criteria are normalized by one of the modes (5) and merged into global priorities by synthesizing (9). 
 
3.1 Multiplicative approach 
This technique is a straightforward extension of the geometric means (6) to incorporate data by many 
experts (r =1,…, N), so the priorities can be estimated as: 

                                                   ,                                                                          (10) 

where each  is an ij-th element of a matrix (3) related to the r-th respondent. Instead of the estimation 
(10), for each AHP matrix we can construct a regression model of the logarithm of the ratios by the set of 
dummy variables indicating by +1 and -1 the item preferred to its counterpart in their pair comparison (the 
technique described for a similar estimation of Thurstone scale in Lipovetsky and Conklin, 2004). Fixing one 
of the items (taking its regression coefficient equals zero) we obtain a multiple linear regression by the other 
items, then we stack the regression coefficients with the fixed zero coefficient, use exponentiation of them, 
and normalize by one of the conditions (5). It produces the same results as the formula (10) yields, but the 
regression approach also gives t-statistics to estimate the difference of the preferences from the fixed one, 
coefficient of multiple determination, its p-value, and other characteristics of the quality of fit. 
 
3.2 Three-Dimensional Eigenproblem 
Consider a three-dimensional matrix arranged by piling the pairwise ratios matrices (3) of many experts. 
Then in place of the regular eigenproblem (4) we have an eigenproblem for a 3D-matrix where the layers 
present data elicited from different respondents. The solution can be obtained in the Least Squares (LS) 
approximation of the 3D-matrix with elements  (as in (10)) by the outer product of the vectors a, b, and 
c corresponding to each of three directions of the matrix: 

                                       .                                                                              (11) 

Differentiating this objective by the vectors' elements yields a system of equations: 
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                 ,                                            (12) 

which is a three-dimensional extension of the relations known in the singular value decomposition technique. 
Substitution of the vector c from the last relation (12) into the two others yields a non-linear eigenproblem:   

                               ,                                                                     (13) 

where the following notations for the matrices are used: 
                          .                                                             (14) 

Solution (13) consists of the vector a of priorities and a dual vector b of anti-priorities, and the problem (13)-
(14) is a generalization of the method (7) to the multiple experts. Characteristics of the fitting quality in this 
approach (11)-(14) are considered in (Lipovetsky, 1994; Lipovetsky and Tishler, 1994). 
 
3.3 PPP-solution for 3D-eigenvector 
There is a simpler way to estimate the main eigenvectors for a 3D-matrix. The results (13)-(14) can be 
simplified due to the Parallel Proportional Profiles principle applied to a 3D-matrix. Then the elements ai 
of the vector a for the 3-dimensional matrix are approximately proportional to the largest singular values 
of the 2-dimensional matrices identified by the i-th sections. The same is true for other vectors: the 
components bj of the vector b in (13) are approximately proportional to the largest singular values of 2-
dimensional matrices identified by the fixed j-th layer of the 3D-matrix. Similarly we can estimate the 
components cr of the vector c in (11)-(12) by the largest singular values of 2-dimensional matrices of the 
r-th respondent. It means that for estimation of the first element of a priority vector a, we can take the first 
rows of the matrices (3) for each respondent, stack them into a matrix of n by N order, and find its largest 
singular value . Then repeat this procedure with the second rows of the matrices (3) by all 

respondents, finding the largest singular value , etc. Combining all these maximum values into one 
vector, we obtain an estimate for the priority vector of the 3-dimensional matrix: 
                                              .                                                                       (15) 
So the estimate of the main eigenvector of a 3-dimensional matrix is reduced to a set of the eigenvalues of 
the regular 2-dimensional matrices. 
 
3.4 Orthogonal Regression 
Each element in a matrix (3) expresses the ratio of two priorities (1), that for many respondents can be 
presented in a linearized form as 
                                                       ,                                                                           (16)  

where the elements  include the index for each r-th respondent,  are the estimates of the theoretical 

preferences, and  are the error terms in this model. Expressing one item via all the others, we can 
apply regression modeling for estimation of the priorities. However, these priorities depend on the choice 
of the item regressed by all the rest of them, and if there are n items n different models can be 
constructed. It is better to employ an orthogonal regression constructed by the minimum distance of the 
observations to the theoretical surface. It produces a unique relation of all the variables in one model. 
Solution can be found as the eigenvector corresponded to the minimum eigenvalue (minimum sum of 
squared distances from observations to the theoretical surface by perpendicular). 
 
3.5 Nonlinear Regression 
In place of the linearized model (16) we can use the original ratio relation of any two priorities (1), so for 
many respondents we have a model: 



 Proceedings of the International Symposium on the Analytic Hierarchy Process 2009 
 

 6 

                                                       .                                                                         (17)  

Minimizing the error terms  corresponds to the nonlinear regression model of the elicited ratio values 

on the left-hand side by all the priority estimates  at the right-hand side (17), in the assumption of the 
same theoretical preferences across the respondents. This problem is easy to solve by nonlinear 
estimations using any modern statistical software package. In contrast to the multiplicative approach (10) 
corresponding to the assumption of the relative error term multiplied by the elicited priority ratio, the 
model (17) matches to the assumption of the additive errors for the elicited paired ratios (Lipovetsky and 
Tishler, 1999). 
 
All the techniques described above in this section, produce group priorities for each core of the hierarchical 
structure, then the vectors are normalized by one or the other conditions (5) and synthesized by (9) into the 
global priorities. The results would depend on the mode of the vectors normalization, so for each of the five 
described techniques we actually obtain two solutions of conventional and ideal modes (5). 
 
3.6 Synthetic hierarchy evaluation 
Consider approaches based on simultaneous operating with all the data from the alternatives, sub-criteria and 
criteria paired comparisons. Such techniques from the beginning employ the global priorities, and produce 
results independent of the normalizing modes (Lipovetsky, 1996). In place of the local priority vectors it is 
possible to use elements of a global vector constructed by the items corresponding to all the alternatives, sub-
criteria and criteria. The elements  of the global priority vector (9) can be represented as totals 
in each row of the following matrix: 

,    (18) 

where we incorporate the elements of the vectors  of sub-criteria and  of criteria into the local 

alternative preferences of each t-th alternative related to the k-th parent sub-criterion and j-th criterion. 
Such weighted items of local alternatives' preferences denoted by  arrange a matrix (18) of n by M 

order, where n is the number of alternatives and  is a total number of all sub-criteria by all 
criteria (8). Sub-matrices of the sub-criteria related to the same criterion are marked by the vertical lines 
in the matrix of the weighted preferences in (18). 
 
It is clear from the structure of the elements in the matrices (18) that a paired ratio of the alternatives 
within any sub-criterion and criterion (that is a column in these matrices) can be expressed either by the 
quotient of the local priorities (as in (1) or (17)), or by the quotient of the weighted priorities. Thus, for 
any k-th parent sub-criterion and j-th criterion, a proportion of preferences between t-th and l-th 
alternatives is held: 

                                              .                                                                      (19)  

Similarly, the quotient of totals across the elements in two columns of the matrices (18) corresponding to any 
two k-th and p-th sub-criteria of the same j-th criterion equals: 
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                   ,                                                   (20)  

where the conventional mode (5) is used for the local alternatives' preferences . Finally, the quotient of 
totals by all the elements in two sub-matrices of the matrix (18) corresponding to any two j-th and s-th 
criteria is: 

             ,                                              (21)  

where the conventional mode (5) is applied for normalizing the local alternatives' preferences  and the 

sub-criteria preferences . 
 
These relations show that the paired ratios of the alternatives, sub-criteria, and criteria can be approximated 
by ratios of the synthesized priorities  (19), of their totals within each sub-criterion (20), and of their 
totals within each criterion (21). So the parameters of the synthesized priorities can be consistently used 
for fitting the elicited paired comparison data of all the levels and centers of the hierarchy structure. Let 
us describe another exposition of such techniques in a form more convenient for practical applications. 
 
3.7 Designing the whole data matrix 
Similarly to the regression approach discussed after the formula (10), we arrange a design matrix of n 
independent dummy variables – each of them identifies one of total n alternatives. Taking a matrix of paired 
ratios for a subset of alternatives related to one of the sub-criteria, we transform its data into the elements of 
the design matrix. Each row the design matrix would contain one element +1 and another -1 indicating the 
pair compared items and the item preferred to its counterpart, respectively. All other entries in this row equal 
zero. The related vector-column of the response would have in this row the value of the paired ratio itself. 
After stacking all the rows of the paired comparison among the alternatives, we add the rows of the paired 
comparisons among the sub-criteria. In accordance with the sums at the left-hand side (20), in each row of the 
design matrix we take so many elements +1 and so many elements -1 as many alternatives nk and np belong to 
the superior and inferior sub-criteria, respectively. Actually, to balance the influence of each subcriterion, we 
use not ones, but those divided by these nk and np numbers. After that we add the rows corresponding to the 
criteria comparisons. Due to the sums at the left-hand side (21), in the rows of the design matrix we take the 
elements +1 and -1 in all the places of the alternatives entering into the sub-criteria that belong to the superior 
and inferior criteria, respectively. Again, to balance the influence of these elements, we use not ones or minus 
ones, but their mean values. 
 
For illustration, consider an AHP structure with two criteria A and C, two sub-criteria a and b within the 
criterion A, three alternatives (a1, a2, a3) within the sub-criterion a, two alternatives (b1, b2) within the sub-
criterion b, and three alternatives (c1, c2, c3) within the criterion C, respectively. Suppose elicited from an 
expert the AHP matrices of paired ratios within each group of the alternatives are: 

     ,           (22a) 

and the matrices of pair comparisons between the sub-criteria a and b, and also between criteria A and C are 
as follows: 
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                         .                                                         (22b) 

The design matrix of all n=8 alternatives is presented in Table 1 by dummy variables x1,…, x8, and the response 
y. In its first three numerical rows the data from the first matrix (22a) is presented. For instance, the a12 =9 
element shown by  +1 and -1 in places where the compared items a1 and a2, all the other elements are zeros, 
and the ratio 9 is given in the last column of the response. We don't need to present the complementary value 
of a21 in the design matrix. The fourth row shows the ratio b12 =7 from the second matrix, and the next three 
rows give the data from the third matrix in (22a). After that we add to Table 1 a row with data of the a and b 
sub-criteria comparison (the first matrix (22b)) – there are +1/3 values for three elements belonging to the 
first sub-criterion, and -1/2 for the elements related to the second one. The last row of Table 1 consists of the 
values -1/5 for five elements entering under the first criterion, and of +1/3 for three elements entering under 
the second criterion. 

Table 1.  Hierarchy Design Matrix of Pair Comparisons by an Expert.   

Criterion A Criterion C 
Sub-criterion a Sub-criterion b - 

Pair 
Comparison Hierarchy 

 
 

Alternatives 
a1          a2        a3 

Alternatives 
 b1                b2 

Alternatives 
c1         c2        c3 

Ratio 
Response 

Pair\dummy x1 x2 x3 x4 x5 x6 x7 x8 y 
a12 1 -1 0 0 0 0 0 0 9 
a13 1 0 -1 0 0 0 0 0 5 
a23 0 1 -1 0 0 0 0 0 1/3 
b12 0 0 0 1 -1 0 0 0 7 
c12 0 0 0 0 0 1 -1 0 6 
c13 0 0 0 0 0 1 0 -1 2 
c23 0 0 0 0 0 0 1 -1 0.5 
ab 1/3 1/3 1/3 -1/2 -1/2 0 0 0 8 
AC -1/5 -1/5 -1/5 -1/5 -1/5 1/3 1/3 1/3 4 

 
Note that we can change signs of all the elements in any row, but simultaneously invert the ratio value at the 
response column. Having the data of many experts, we stack their Table 1 matrices in rows into one 
extended matrix of all respondents. In a matrix of Table 1 the total in each row equals zero, so this matrix 
has rank n-1, and one column can be excluded for regression fitting of the response y by the set of dummy 
variables (a similar technique for Thurstone scaling is described in Lipovetsky and Conklin, 2004). 
  
3.8 Linear regression by all the data 
Suppose a total matrix similar to Table 1 by all the paired comparison AHP matrices from all the hierarchy 
centers and by all respondents is constructed. Such data is ready for regression modeling of the logarithm of 
the ratio scores in the last column by the dummy variables (taking n-1 of them, except any redundant one), 
and without intercept: 
                                 ,                                                             (23)  

where fitting is performed by the least squares minimizing of the error terms , and index  i corresponds 
to the rows of observations in Table 1. When the regression coefficients d are estimated, we add a zero-
coefficient in place of the excluded dummy variable, take the exponent of all coefficients, and normalize 
them, say, by the conventional mode (5). The obtained vector presents the global priorities in the 
simultaneous multiple linear regression estimation by all the hierarchy levels and all the respondents. This 
regression corresponds to minimizing the deviations in models similar to (15)-(16) but with the multiplicative 
relative error term. It also uses the multiplicative in place of the additive combinations of the weighted 
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preference ratios on the left-hand side in (20)-(21), when taking the logarithm transforms the models to the 
linearized form (23). The results of estimation (23) do not depend on which dummy variable was excluded in 
the modeling. Besides the coefficients transformed to the priorities, the regression (23) yields their errors and 
t-statistics which help estimate the significance of any preference in comparison with the fixed one, and other 
characteristics of the model's quality. 
 
3.9 Nonlinear regression by all the data 
Nonlinear fitting of all the data can be performed by the following model: 

                        ,                                                     (24)  

where each  corresponds to the element in i-th row and j-th column of a matrix in Table 1. Notations 

 and  indicate that the positive and the negative inputs from the dummy variables 

 in Table 1 are taken in the numerator and denominator (24), respectively. Parameters  are the 
estimators of the global priorities, and the model (24) corresponds to the relations (19)-(21) expressing 
the paired ratios via the weighted preferences. Because a matrix of Table 1 has rank n-1, and the nonlinear 
form (24) is homogeneous by the estimated parameters, one of them should be fixed, for instance we can 
assign . The parameters can be found via the nonlinear minimization of the errors , which can be 
achieved using software available in modern statistical packages. The estimated parameters can be 
standardized to the priorities by the conventional mode (5). 
 
3.10 Quality of fit 
In any global priority vector, taking the elements corresponding to a particular subset of pair-compared 
alternatives and normalizing them by a mode (5), we obtain the vector of local priorities for this center of 
the hierarchy. Similarly, picking the subsets of the global priority elements corresponding to the sub-
criteria or criteria, finding their totals (due to (20) for sub-criteria, or (21) for criteria), and normalizing 
them by (5), we obtain the local vectors of priority within the sub-criteria or criteria, respectively. To 
check the quality of approximation of all the pair comparison matrices by the obtained global priority 
vectors it is convenient to use the coefficient of multiple determination defined similarly to the one well 
known in regression modeling: 

        ,                                         (25)  

where  corresponds to a pair-wise ratio of two items in any data matrix of alternatives, sub-criteria, 

and criteria comparisons, and  is this ratio estimated by the found priority vectors with the 

elements , and the summing is performed by the paired comparisons in all levels of the hierarchy 

structure. In numerator (25) we have the total residual sum of squares  of the estimated priorities 
ratio deviations from the elicited values. In denominator (25) we have the total equivalent sum of squares 

 using the assumption of the same preferences in any ratio deviations from the elicited values. So 
the coefficient (25) shows how much the found priorities outperform a hypothesis of the same preferences 
by all alternatives. The better (worse) is the approximation – the smaller (larger) is the residual sum of 
squares, and the closer is the coefficient of multiple determination (25) to one (to zero). 
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4. Comparison of the numerical results 
Consider an example from a real project in marketing research with the alternatives corresponding to a 
variety of products. There are two primary criteria (denoted A and B), six secondary sub-criteria within A 
(those are a, b, c, d, e and f ) and three secondary sub-criteria within B (those are x, y, and z). Within these 
sub-criteria there are the following numbers of tertiary items given in parentheses: a (3), b (5), c (5), d (4), 
e (3), f (3), also x (4), y (2), and z (4). All 33 items can be denoted using criterion, sub-criterion and item 
notations as follows: Aa1, Aa2, Aa3, Ab1,…, Af3, and Bx1, …, Bz3. Each of ten experts evaluated the 
following paired relations for this hierarchy: 1 pair (A and B) on the upper level; 15 pairs among (a, b, c, 
d, e and f), etc, for a total of 67 comparisons elicited and arranged in the AHP matrices of paired ratios for 
10 experts. The global priority vectors estimated by various techniques are presented in Table 2. 
 

Table 2: Scores of Global Priority in Various Estimations. 

Item 
 

Multiplicative 
method 

3D- 
eigenvector 

PPP- 
eigenvector 

Orthogonal 
regression 

Nonlinear 
regression 

SH 
linear 

SH 
nonlin 

# name conv ideal conv ideal conv ideal conv ideal conv ideal conv conv 
1 Aa1 15.2 11.5 12.2 9.7 8 6.6 41.2 36.3 18 14.2 16 17 
2 Aa2 2.9 2.2 3.4 2.7 3.6 3 4.8 4.2 3.1 2.5 3.1 4.3 
3 Aa3 2.9 2.2 4.2 3.3 3.9 3.3 5 4.4 3 2.5 3 2.9 
4 Ab1 3.3 6 2.6 3.9 2.4 3.6 3.9 4.8 1.2 1.3 4.5 1 
5 Ab2 1.5 2.7 1.2 1.7 1.9 2.8 0.7 0.8 0.6 0.7 2.1 0.7 
6 Ab3 2.4 4.4 2.6 3.8 2.6 3.8 1.1 1.4 0.3 0.3 3.3 0.2 
7 Ab4 2.4 4.3 3.8 5.6 3.4 5 0.7 0.9 2.8 3.1 3.2 3 
8 Ab5 1.2 2.1 1.2 1.8 1.4 2.1 0.3 0.4 0.4 0.4 1.6 0.4 
9 Ac1 2.6 4.2 3.1 4.9 2.8 4.3 1.6 1.9 3.6 5.6 3.5 3.6 

10 Ac2 1.8 2.9 1.5 2.3 2.3 3.6 0.6 0.7 1 1.6 2.4 1 
11 Ac3 4.4 7.2 4.9 7.8 4.3 6.6 5.1 6.2 7.1 11 6 6.8 
12 Ac4 2.7 4.4 4.1 6.4 3.6 5.6 0.9 1.1 5.3 8.3 3.6 5.1 
13 Ac5 1.6 2.6 2.3 3.5 2.6 4 0.6 0.7 1.3 2 2.2 1.2 
14 Ad1 6.9 8.1 8.7 9.9 6.3 7.4 4.5 4.8 12 14.5 7.8 12 
15 Ad2 3 3.5 4.1 4.6 4 4.7 0.8 0.9 2.1 2.6 3.3 2 
16 Ad3 2.1 2.4 2.6 3 2.6 3 0.7 0.8 2.2 2.7 2.3 2.3 
17 Ad4 2.8 3.3 4.8 5.4 4.2 4.9 0.8 0.9 7.7 9.3 3.1 7.7 
18 Ae1 6.7 4.9 7.3 5.4 6.1 4.6 4.3 3.8 4.7 3.7 7.5 4.9 
19 Ae2 1.2 0.8 1.8 1.3 2.3 1.8 0.5 0.4 0.8 0.6 1.3 0.8 
20 Ae3 1 0.7 1.9 1.4 2.3 1.8 0.5 0.4 0.7 0.5 1.2 0.7 
21 Af1 3.2 3.7 3.6 3.2 2.7 3 1.7 3.3 3.7 3 2.5 3.6 
22 Af2 1.8 2 1 0.8 2.5 2.8 1.8 3.6 0.6 0.5 1.4 0.5 
23 Af3 1.9 2.2 1.9 1.6 1.8 2.1 1.6 3.3 0.8 0.7 1.5 0.8 
24 Bx1 8.1 3.7 4 1.8 4.3 2.1 8.7 7.2 5.5 3 5.3 5.6 
25 Bx2 2.4 1.1 1.6 0.7 2.9 1.4 1.3 1.1 1.2 0.7 1.5 1.3 
26 Bx3 2.2 1 1.3 0.6 2.3 1.1 1.1 0.9 0.9 0.5 1.5 0.9 
27 Bx4 2.6 1.2 2.1 1 2.9 1.4 1.1 0.9 3.9 2.1 1.7 3.8 
28 By1 1.7 0.6 0.7 0.2 2.4 0.6 0.6 0.4 0.6 0.2 0.5 0.6 
29 By2 3.7 1.3 3.8 0.9 4.8 1.2 2.1 1.6 2.6 0.9 1.1 2.7 
30 Bz1 1.2 0.9 0.6 0.3 0.8 0.5 1 1 0.4 0.2 0.7 0.4 
31 Bz2 1 0.7 0.5 0.3 0.8 0.5 0.4 0.4 1.8 0.7 0.6 2 
32 Bz3 0.7 0.5 0.2 0.1 0.6 0.4 0.2 0.2 0.1 0 0.4 0.1 
33 Bz4 0.7 0.5 0.4 0.2 0.6 0.4 0.2 0.2 0.3 0.1 0.4 0.3 

R2 0.23 0.23 0.24 0.24 0.13 0.14 0.04 0.13 0.38 0.39 0.25 0.38 
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The first two vectors correspond to the multiplicative method (10), with both conventional and ideal 
modes (5) used within each local priority (the modes are denoted as conv and ideal in Table 2). For the 
sake of comparison, the global vectors obtained with the ideal mode are finally renormalized to the 
conventional mode. Also, the vectors are multiplied by 100, so their elements are the priority percent 
shares. The next pairs of vectors in Table 2 are estimated by 3D- eigenvector problem (13), by the 
simplified PPP-solution (15), by the orthogonal regression (16), and by nonlinear regression (17). Finally, 
the synthetic hierarchy simultaneous estimations (18)-(21) of all global priorities in the linear (23) and 
nonlinear (24) approximations are presented in the last two columns of Table 2. The coefficient R2 (25) in 
the last row of Table 2 indicates that the best results are suggested by the nonlinear models. Next Table 3 
presents the ranks of priorities from Table 2. 
 

 Table 3: Ranks of Global Priority in Various Estimations. 

Item 
 

Multiplicative 
method 

3D- 
eigenvector 

PPP- 
eigenvector 

Orthogonal 
regression 

Nonlinear 
regression 

SH 
linear 

SH 
nonlin 

# name conv ideal conv ideal conv ideal conv ideal conv ideal conv conv 
1 Aa1 1 1 1 2 1 2 1 1 1 2 1 1 
2 Aa2 10 18 13 16 10 15 5 7 11 13 13 8 
3 Aa3 11 20 6 13 9 14 4 6 12 14 14 13 
4 Ab1 7 4 15 10 21 12 8 5 20 18 6 20 
5 Ab2 26 15 27 20 27 18 24 23 26 22 19 26 
6 Ab3 16 7 17 11 19 11 16 14 32 29 10 32 
7 Ab4 17 8 10 5 12 5 22 19 13 8 11 12 
8 Ab5 27 21 26 19 29 22 31 30 30 28 21 30 
9 Ac1 15 9 14 8 15 9 13 12 10 6 8 10 

10 Ac2 22 14 24 17 25 13 27 26 21 17 16 21 
11 Ac3 5 3 4 3 6 3 3 3 4 3 4 4 
12 Ac4 13 6 7 4 11 4 19 15 6 5 7 6 
13 Ac5 25 16 18 12 17 10 25 25 18 16 18 19 
14 Ad1 3 2 2 1 2 1 6 4 2 1 2 2 
15 Ad2 9 12 8 9 8 7 20 21 16 12 9 16 
16 Ad3 20 17 16 15 18 16 23 24 15 11 17 15 
17 Ad4 12 13 5 7 7 6 21 22 3 4 12 3 
18 Ae1 4 5 3 6 3 8 7 8 7 7 3 7 
19 Ae2 29 28 22 23 23 23 28 27 24 24 26 24 
20 Ae3 30 29 20 22 24 24 29 28 25 25 27 25 
21 Af1 8 10 12 14 16 17 11 10 9 10 15 11 
22 Af2 23 22 28 26 20 19 10 9 28 27 25 28 
23 Af3 21 19 21 21 28 21 12 11 23 21 23 23 
24 Bx1 2 11 9 18 5 20 2 2 5 9 5 5 
25 Bx2 18 25 23 27 14 26 14 16 19 23 22 18 
26 Bx3 19 26 25 28 26 28 15 18 22 26 24 22 
27 Bx4 14 24 19 24 13 25 17 20 8 15 20 9 
28 By1 24 31 29 32 22 29 26 29 27 30 31 27 
29 By2 6 23 11 25 4 27 9 13 14 19 28 14 
30 Bz1 28 27 30 29 31 31 18 17 29 31 29 29 
31 Bz2 31 30 31 30 30 30 30 31 17 20 30 17 
32 Bz3 33 33 33 33 32 32 32 32 33 33 33 33 
33 Bz4 32 32 32 31 33 33 33 33 31 32 32 31 
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The ranks from 1 to 33 are assigned to the alternatives from the best to the worst in each priority vector. 
By Tables 2 and 3, the conventional mode usually produces more variability in the priority elements, 
while the ideal mode makes more evenly distributed elements with less rank reversals. The results of the 
orthogonal regression raise some doubts because they differ noticeably from the other evaluations having 
a large weight of the first alternative. The preferences in PPP are more evenly allocated to the 
alternatives, so it is more difficult to distinguish them. Both orthogonal and PPP techniques produce poor 
approximation results which can also be seen by their small R2 in Table 2. 
 
In spite of some volatility in ranks, the general structure of all the vectors is pretty stable – Table 4 
presents a matrix of pair correlations of all the vectors from Table 2, together with the additional rows of 
the means and totals of the correlations in each column. 
 

 Table 4: Correlations between Global Priority Vectors 

 
Mult 
conv 

Mult 
ideal 

3D 
conv 

3D 
ideal 

PPP 
conv 

PPP 
ideal 

Orth 
conv 

Orth 
ideal 

NLin 
conv 

NLin 
ideal 

SH 
lin 

SH 
nlin 

Mult 
conv 1.00 0.82 0.90 0.66 0.86 0.57 0.90 0.89 0.88 0.70 0.95 0.88 
Mult 
ideal 0.82 1.00 0.87 0.92 0.76 0.87 0.71 0.74 0.83 0.83 0.93 0.82 
3D 

conv 0.90 0.87 1.00 0.87 0.95 0.79 0.75 0.75 0.92 0.85 0.93 0.92 
3D 

ideal 0.66 0.92 0.87 1.00 0.77 0.97 0.52 0.54 0.82 0.91 0.82 0.81 
PPP 
conv 0.86 0.76 0.95 0.77 1.00 0.73 0.66 0.66 0.85 0.76 0.85 0.85 
PPP 
ideal 0.57 0.87 0.79 0.97 0.73 1.00 0.41 0.44 0.71 0.84 0.75 0.71 
Orth 
conv 0.90 0.71 0.75 0.52 0.66 0.41 1.00 0.99 0.78 0.58 0.87 0.78 
Orth 
ideal 0.89 0.74 0.75 0.54 0.66 0.44 0.99 1.00 0.79 0.60 0.87 0.78 
NLin 
conv 0.88 0.83 0.92 0.82 0.85 0.71 0.78 0.79 1.00 0.93 0.89 1.00 
NLin 
ideal 0.70 0.83 0.85 0.91 0.76 0.84 0.58 0.60 0.93 1.00 0.79 0.92 
SH 
Lin 0.95 0.93 0.93 0.82 0.85 0.75 0.87 0.87 0.89 0.79 1.00 0.89 
SH 

NLin 0.88 0.82 0.92 0.81 0.85 0.71 0.78 0.78 1.00 0.92 0.89 1.00 
 

mean 0.83 0.84 0.87 0.80 0.81 0.73 0.74 0.75 0.87 0.81 0.88 0.86 
 

total 10.00 10.10 10.50 9.61 9.70 8.78 8.94 9.05 10.39 9.72 10.54 10.36 
 

Table 4 shows that the vectors correspond one to the other very well – the correlations generally are pretty 
high. The mean level of correlations is about 0.8 and more for most of the vectors. The last row of totals 
in the columns allows one to easily find which estimations produce more similar vectors. The totals are 
higher for the Multiplicative in both modes, 3D-eigenvector and Nonlinear estimation in the conventional 
mode, and Synthetic hierarchy estimation in the linear and nonlinear evaluations. Similar results were 
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obtained by the normalized projections (cosines) between the vectors, and by Spearman's rank correlation 
and Kendall's tau-coefficients constructed by the ranks from Table 3. To finalize priority consideration, 
the following procedure can be added: calculate the average of all the vectors in Table 2 using weights of 
the R2 shares as a measure of each vector importance – the results are presented in Table 5. 
 

 Table 5: Averaged Global Priorities and their Ranks 

Weighted Mean Priorities  Priorities Ordered by Rank 
item priority rank  item priority rank 
Aa1 15.23 1  Aa1 15.23 1 
Aa2 3.17 11  Ad1 9.78 2 
Aa3 3.12 12  Ac3 6.94 3 
Ab1 2.80 14  Ad4 5.57 4 
Ab2 1.34 22  Ae1 5.32 5 
Ab3 1.92 19  Ac4 4.92 6 
Ab4 3.35 9  Bx1 4.66 7 
Ab5 1.04 27  Ac1 3.80 8 
Ac1 3.80 8  Ab4 3.35 9 
Ac2 1.77 20  Af1 3.26 10 
Ac3 6.94 3  Aa2 3.17 11 
Ac4 4.92 6  Aa3 3.12 12 
Ac5 2.04 18  Ad2 2.99 13 
Ad1 9.78 2  Ab1 2.80 14 
Ad2 2.99 13  Ad3 2.38 15 
Ad3 2.38 15  Bx4 2.35 16 
Ad4 5.57 4  By2 2.16 17 
Ae1 5.32 5  Ac5 2.04 18 
Ae2 1.08 26  Ab3 1.92 19 
Ae3 1.02 28  Ac2 1.77 20 
Af1 3.26 10  Af3 1.46 21 
Af2 1.27 24  Ab2 1.34 22 
Af3 1.46 21  Bx2 1.34 23 
Bx1 4.66 7  Af2 1.27 24 
Bx2 1.34 23  Bx3 1.10 25 
Bx3 1.10 25  Ae2 1.08 26 
Bx4 2.35 16  Ab5 1.04 27 
By1 0.68 30  Ae3 1.02 28 
By2 2.16 17  Bz2 0.97 29 
Bz1 0.58 31  By1 0.68 30 
Bz2 0.97 29  Bz1 0.58 31 
Bz3 0.25 33  Bz4 0.34 32 
Bz4 0.34 32  Bz3 0.25 33 

 
The mean priorities are very similar to most of the estimations in Table 2, but they are more stable and 
provide an easier way to choose the best items: the most preferred alternatives are Aa1, Ad1, Ac3, etc. 
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5. Summary 
The problem of synthesizing the local preferences into global priorities in group decision making by the 
hierarchy structure is considered. Classic methods are tried together with new developed techniques, 
including multi-response multiplicative mode, three-dimensional eigenproblem and its simplification in 
parallel proportional profile estimation, orthogonal regression, non-linear local evaluation, linear and 
nonlinear synthetic hierarchy optimizing procedures. Marketing research data with 2 criteria, 9 sub-
criteria, and 33 alternatives was used to produce results by a dozen different approaches. The main 
estimation techniques yield rather similar global priority vectors with comparable ranks of the items. The 
most consistent methods are identified for practical managerial decision making in complex hierarchies. 
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