SELECTION OF PHOTOVOLTAIC SOLAR POWER PLANT PROJECTS USING ANP

Pablo Aragonés-Beltrán*^a E-mail: <u>aragones@dpi.upv.es</u>

Juan P. Pastor-Ferrando^a E-mail: <u>jppastor@dpi.upv.es</u>

Fidel Chaparro-González^b E-mail: <u>fchaparro.des@elecnor.es</u>

R. Poveda Bautista^a E-mail: <u>ropobau@dpi.upv.es</u>

^aDepartment of Engineering Projects ^bDepartment of Business Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, SPAIN.

ABSTRACT

This paper presents an analysis to simplify a complex model, based on the Analytic Network Process (ANP); to select photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In a previous work a top manager of an important Spanish company decided on the best PV project (from four alternative projects) to invest based on risk minimization, using a complex ANP model (54 elements grouped into different clusters). This model needs to be simplified in order to solve similar selection problems in future.

To identify which risks have to be eliminated from the original model is a difficult task. In this work two ways for doing this identification are proposed: in the fist way we select the 25 more important risks obtained by the original ANP model; in the second way we asked the decision maker to select the 25 risks that he considers have to be included in the future selection problems. The differences between both models are analyzed.

In both cases the original ANP model, including its influences between elements of the network, has been simplified using Superdecisions software.

Keywords: Analytic network process (ANP), project selection, photovoltaic (PV) solar power projects

1. Introduction

Spain has very good conditions for the development of photovoltaic solar power systems due mainly to the high mean daily radiation and the high number of sunny days in most parts of the country. For this reason, the Administration and companies working in the sector are developing policies and investing in photovoltaic solar power systems (Salas and Olias, 2008).

^{*} Corresponding author

The present paper analyzes the problem for the top manager, acting as *Decision Maker* (DM), of an important solar power investment company to establish a priority order among different projects for the development of a photovoltaic solar power plant. The decision problem presented here is highly complex because in addition to economic profitability, the risks involved in the development, construction, execution and maintenance of the plant are relevant factors in the decision making process. Investment companies that execute the project and further exploit the installations cannot have their resources inactive while waiting for the corresponding construction approval and execution permits, which may get delayed, or depend on long negotiations with the power supply company.

In a previous work the DM, assisted by the research team of the Department of Engineering Projects of the Polytechnic University of Valencia, playing the role of *Analysis Team* (AT), solved the following decision-making problem: "*Given a number of photovoltaic power investment projects that are known to be profitable for the company, establish project priority based on project risk levels and execution time delays*". Four specific projects were prioritized and fifty risks were identified. These risks were grouped into clusters and, following the ANP method, the influences between elements and between clusters were identified and prioritized. In the following we will refer to this model as *complex model*.

The problem raised by the DM was that this model was too complex to use in future similar decision making problems and he asked the AT to simplify it. The way to do this is not an easy task. The results of the complex model showed us the prioritization between alternatives and the weights of the risks but these weights depend on the specific projects that have been considered. In this work two ways for doing this identification are proposed: in the fist way we select the 25 more important risks obtained by the original ANP model; in the second way we asked the decision maker to select the 25 risks that he considers have to be included in the future selection problems.

The rest of the paper is organized as follows. Firstly, Section 2 introduces the complex model and presents the main results. Section 3 describes the simplification process and Section 4 presents the main conclusions drawn from this research and future works.

2. Description of the complex model

The steps of the decision-making process were the following:

- i. Analysis of the project stages involved in the development of a PV solar power plant.
- ii. Risk Identification and classification.
- iii. Specification of the Project portfolio.
- iv. ANP modelling of the decision-making problem.
- v. ANP prioritization and conclusions.

At the first step the process of developing a photovoltaic solar power plant was analyzed from the selection of the best plant site to the execution, exploitation and maintenance of the plant. This analysis allowed the DM to identify project delay or stoppage risks for each stage of the process. At step ii) fifty risks were identified and grouped into eleven clusters: political, technical associated with plant site, technical associated with technology, economic associated with plant exploitation, economic associated with the obtaining of the plant start-up permits, economic associated with plant site, economic associated with technology, macroeconomic, time delays, legal and social risks.

In step iii) the DM identified the projects that were used as alternatives in the decision process. Project selection was based on criteria of economic profitability, and technical and environmental feasibility. Four projects with different characteristics and plant location were finally selected.

P. Aragones-Beltran, J.P. Pastor Ferrando, F. Chaparro-Gonzalez, R. Poveda-Bautista/ Selection of photovoltaic solar power plant projects using ANP

The ANP model of the decision making process was built in step iv) following the main steps of this method (Saaty, 2001). The decision model was built with the support of Super Decisions v1.6.0. software (*www.superdecisions.com*). The results obtained are shown in Tables 1 and Table 2 (in Table 1 only the first twenty five classified weights are included ordered by preference/influence).

	Risks	ANP complex model influence	ANP complex model influence renormalized
C01	Changes in the energy policy	0.118	0.137
C50	Social consequences resulting from land acquisition	0.105	0.121
C40	Delays in the obtaining of the EIS	0.065	0.075
C47	Legislative changes in the EIS	0.063	0.073
C48	Thefts	0.063	0.073
C02	Local body Approval	0.060	0.069
C19	Revenue estimates based on effective solar radiation time	0.045	0.052
C39	Delays in the obtaining of the Local Body Approval	0.041	0.048
C30	Costs due to lack of consistency in solar tracker selection	0.031	0.035
C18	Performance losses	0.028	0.033
C22	Flood prevention works	0.026	0.030
C43	Changes in the general legislation	0.025	0.029
C38	Delays in the signature of the agreement with the Electricity supply company	0.023	0.026
C49	Vandalism	0.021	0.024
C37	Delays in the obtaining of the plant Start-up Act	0.016	0.019
C15	Plant operation costs	0.016	0.019
C42	Changes in the specific legislation	0.015	0.018
C21	Earthworks resources	0.014	0.017
C34	Changes in energy prices	0.014	0.016
C46	Obtaining of the Registration in the Register of Production Facilities in special Regime	0.013	0.015
C03	Obtaining of the Construction License	0.013	0.015
C16	Corrective maintenance costs	0.012	0.014
C45	Legislative changes in the Plant Start-up Act	0.012	0.014
C28	Costs due to wrong selection of PV cell	0.012	0.014
C09	Development of new PV solar power systems	0.011	0.013
	Total	0.862	1

Table 1.- First twenty five risks in the ANP complex model

A3	0.144
A4	0.159
A1	0.285
A2	0.412

Table 2.- Alternative ranking in the ANP complex model

Let's now mention an important consideration that affected the whole decision analysis process: although the main goal of the problem was to select the project with the lowest risk, when formulating the comparison matrices to weigh the risks according to Saaty's 1-9 scale, the highest weight was obtained by the risk with the highest score; i.e. when comparing the importance of two risks, it was easier for the DM to score 9 a risk that was extremely more important than another risk with which it was compared. In this sense, for the risk-based assessment of the alternatives, the DM thought it better to consider a higher risk alternative more important than the other alternatives under comparison. And this is the reason why the alternative with a higher score also obtained a higher risk value. Thus, in the results of ANP the alternative with the highest score is also the alternative with the highest risk value. This is why the formulation of the main goal of the problem states "to minimize risks". However, for the final decision and taking into consideration all risks, the alternative with the lowest score is considered a better option, and therefore the project globally assessed as the alternative with the lowest risk value is the alternative finally selected as the best option.

3. Simplification process

The DM was pleased with the results of the complex model. However, he realized how difficult it was to apply this model to future similar cases. So he asked the AT to simplify this complex model. The main problem was to select the main risks to take into account in future prioritizations. The AT observed that the twenty five more influential risks account for 86.2% of the total weight. The AT considered better to build up a new model with twenty five risks.

The second problem was which twenty five risks to select. At this stage two different ways to do this selection seemed reasonable. The first one was to select directly the first twenty five more influential risks obtained in the complex model (Table 3). The second one was to ask the DM to select the twenty five risks to be selected in future similar decision making problems (Table 4).

	C01	Changes in the energy policy
POLITICAL	C02	Obtaining of the Local body Approval
	C03	Obtaining of the Construction License
TECHNICAL ASSOCIATED WITH TECHNOLOGY	C09	Development of new PV solar power systems
	C15	Plant operation costs
ECONOMIC ASSOCIATED WITH PLANT EXPLOITATION	C16	Corrective maintenance costs
TEAN EXILONATION	C18	Performance losses
ECONOMICS ASSOCIATED WITH	C19	Revenue estimation based on effective solar radiation time
PLANT SITE	C21	Earthworks resources
	C22	Flood prevention works
ECONOMIC ASSOCIATED WITH	C28	Costs due to wrong selection of PV cell
TECHNOLOGY	C30	Costs due to lack of consistency in solar tracker selection
MACROECONOMIC	C34	Changes in energy prices
	C37	Delays in the obtaining of the plant Start-up Act
TIME DELAYS	C38	Delays in the signature of the agreement with the Electricity supply company
	C39	Delays in the obtaining of the Local Body Approval
	C40	Delays in the obtaining of the EIS
	C42	Changes in the specific legislation
	C43	Changes in the general legislation
LEGAL	C45	Legislative changes in the Plant Start-up Act
	C46	Obtaining of the Registration in the Register of Production Facilities in special Regime
	C47	Legislative changes in the EIS
	C48	Thefts
SOCIAL	C49	Vandalism
	C50	Social consequences resulting from land acquisition

Table 3.- First twenty five risks from the ANP complex model

	C01	Changes in the energy policy
POLITICAL	C02	Obtaining of the Local body Approval
	C03	Obtaining of the Construction License
TECHNICAL ASSOCIATED WITH PLANT SITE	C04	Technological adequacy to climate change
	C09	Development of new PV solar power systems
TECHNICAL ASSOCIATED WITH TECHNOLOGY	C13	Connection to the electric grid
TECHNOLOGI	C14	Possibility of alternative power generation systems
ECONOMIC ASSOCIATED WITH PLANT EXPLOITATION	C15	Plant operation costs
ECONOMIC ASSOCIATED WITH THE	C24	Costs of connection to electric grid
OBTAINING OF THE PLANT START- UP PERMITS	C26	Possibility of constructing the power connection line
	C31	Obtaining of bank financing
MACROECONOMIC	C33	Changes in the price of money
	C34	Changes in energy prices
	C35	Delays in the construction of the power connection line
	C36	Delays in the obtaining of the administration approval for the construction of the line
TIME DELAYS	C37	Delays in the obtaining of the plant Start-up Act
	C39	Delays in the obtaining of the Local Body Approval
	C40	Delays in the obtaining of the EIS
	C41	Delays in the obtaining of the construction license
	C42	Changes in the specific legislation
	C44	Legislative changes in the Administrative Authorization of the power distribution line
LEGAL	C45	Legislative changes in the Plant Start-up Act
	C46	Obtaining of the Registration in the Register of Production Facilities in special Regime
	C47	Legislative changes in the EIS
SOCIAL	C50	Social consequences resulting from land acquisition

Table 4.- Twenty five risks chosen by the DM

4. Simplified models and results

Both models have to preserve current cluster structure and the influences established in the complex model. If this structure changes the judgments made by DM should be reconsidered. The AT simplified the complex model with the support of Superdecisions software. Figure 1 and Figure 2 show these two simplified models. Table 5 shows the comparative results and Table 6 shows Hadamard's compatibility index.

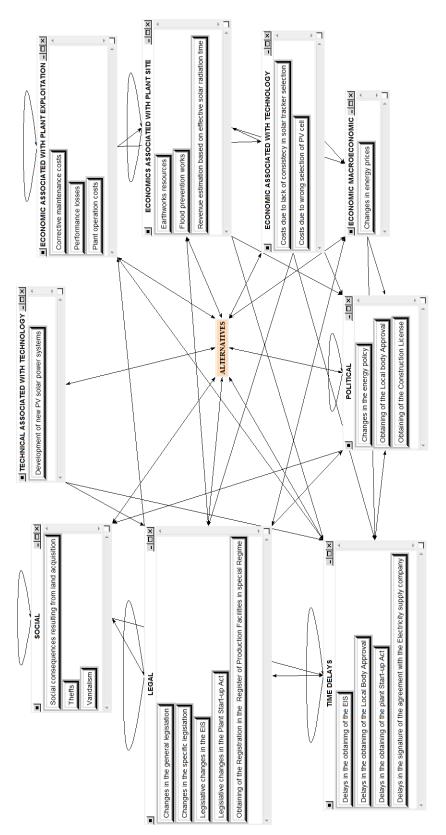


Figure 1.- Simplified model with twenty five risks selected by the ANP complex model

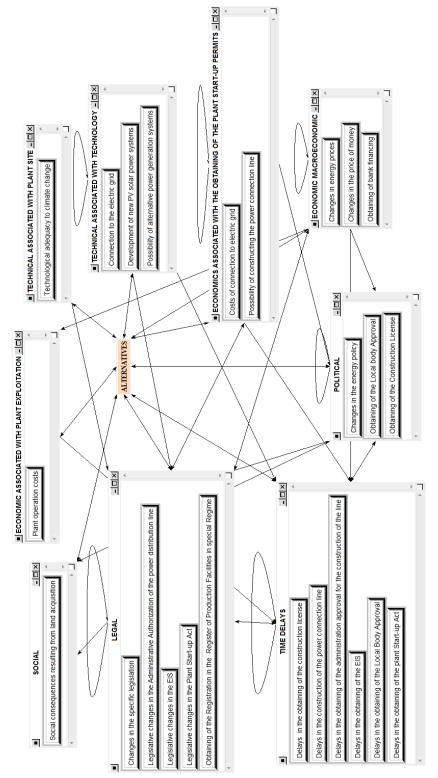


Figure 2.- Simplified model with twenty five risks selected by the DM

C50	10160	,0169	0,0414			Τ	Γ											Τ	Т					0,5628	0,1126		e Lo	3	0,3093	0,5113	Zcn'n	0,12/5		Τ	Τ												Τ				Τ		Τ	Τ	Γ
C49	0 01210	0,0154 0,0169	0,0378 0											1		0,0856	+		T					0		0,6175	Ę			0,0218		_	760010		T	T											T	T	0,2986		T	T	T	T	Γ
C48	0 2001	0,0161 0	0,0332 0										+			0,0856 0,		+		╈					+	0,6175 0,	20	₹		0,0209	7700'n	0,0057	0,6118 0,4291 0,000 0,000 0,000		T	T												T	1		0,2986	T	Τ	T	Γ
C47	0 1310 0			0,4679			T						+		┥	0		0020	00/70	1700.0					+	0	1		0,0101	0,0202 0,0153 0,0166 0,0209	/T00/0	0,0041	//05'0												ó	0,05		0,0171	0,1244	0,0085		0,1971			
C46	0 02100	0019 0,	0,0048 0,	0,5406 0,					0,0999	0,0610								C	0 1010 0							_	;		0,0071	0,0202 0,0153	FTNN'N	0,0037	0,4291							0,0254	0,1269				0,0204	0,1238				0,0502					0,1968
C45 (0 101010	0,0028 0,0013 0,0019	0,0033 0,	0,3845 0,					0)	0			+	+	+		18cn/n	0,0230	0 0000	0.1244 0				0,0891	0,0891	-	5	747		0,0202	7700'0	0,0046	0,6118										0,0072	0,0647	0,0197				0,1272	0,0115					
C43 (0028 0,	0,0070 0,	0,8190 0,										+	0,1264		5 0	5 0	5 0					0	6		ŝ	C41	0,0069	0,027 0,0276	STUU,U	0,013	0.000	0,2385															0,0888					0,5142 0,5142	
C42 (10 000010	0,0015 0,0	0,0033 0,	0,4159 0,						0,0470		_	+			0,0121	0/00/0	0,038/	00777/0	0.2019					+	_	90					0,0064		0,318														0,1185						0.5142	
C40 0	0 0200 0	0,0018 0,0			180	-				0'(-	+	╉	6	6)'N C8TT'N	Ś	2			0,5142		+	-	80	257	0,0075	0,0252	8700'n	0,0139		0,265															0,1053	0,0132				0,5142	
C39 C		0,0028 0,0			0,2650 0,3180	200						_	+	┥	+	-	0,023/	0,00,00	2	+			0,5142 0,5		-	_	5	2	0,0148	0,0292 0,0291 0,0148 0,0252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0045	0,0148		0,0795	rocz'n										0,0052	0,015		- 1		0,0089		0,0857	0,4285		
C38 C		022 0,0	0,0117 0,0	0,3180	000	5	\vdash	\vdash				+	+	+	┥		5	100	10 DOTT 10	+	-	0,5142	0,5		+	_	20	20	0,0126	0,0291	11		0,318																0,1185				0,5142		
C37 C		0,0049 0,0022	0,0148 0,0		0,0795	2						_	+	-	+		0,0204		T'n T//0'n	+	0,5142	0,5			-	_	100	ŝ			_		0,318													0,1185						0,1285		0,3857	
C34 C	0 0 20010				88	70	-					+	+	+	+					2 5			-		+	-		5	0,0311	0,0318 0,105/ 0,0515 0 0041 0 0108 0 0052	zenn'n	0,0128	1500,0 / 121,0 1020,0										0,4244		0,0465 0,0123	0,0406			0,159	-	0,089				
				0,0834	-	-				744		_	+	+		0,0221				150 0.0695		115	_		+	_	50		0,064	0,105/		0,0264	/67T'0													0,0726	0,0269	0,1922	0,2986	0,0269					
C28 C30	1001/0 CC	0,0146 0,0156	157 0,0486	0,1043 0,1043	+					744 0,1744		_	+	+	114 0,0414	-	502	1000/0 200	0,0447 0,0447	150 0.0050		0,0115 0,0115	_		+	_	2							0,0169	c+To'o				0,1862				0,0691	0,2763		0,0267		0,0779	~	_	0,0724				L
		_	-	0,10	_	_				01 0,1744		_	_	-	16 0,0414	-	6980'n	0,0352	C+T7/0	0.0050		0,01	_		_	_	200		0,089	0,2922	0,0238		0,1509							0,0669	~					0,0449		0,0221	0,1419	0,0101		0,015		0,0751	
1 C22		0,3624 0,0150 0,0157	58 0,1121		+	_		-		13 0,5401		_	+	+	41 0,0516	+		76 13	5	+	-		_		+	_	ŝ			0,3299		0,1387									0,0788					0,0568		0,0265	0,1638	0,0108		0,1061			L
C21	10 0 1105	24 0,01	46 0,1658	22						0,4613		_	_	+	54 0,0441	_	6	71157	/0TT /0	2 3	!				_		2			0,3862		680'0															0,25								L
C19				0,2057			8	1				_	=	_	0,0764	=			2000 0	0.0143					_		2		0,0197	0,0192 0,1066 0,0592 0 0192 0 008 0 0197		0,019/				0.318									0,0881 0,0501	0,0672	0,0187	0,1132			0,0411		0.0048 0.0082		L
C16 C18	0/47/0 2	0,0315 0,0248	2 0,0608				0,0530	0,1591				_	1 0,0411	7 0,2054	_	0,0814 0,0641				_					_		50		0,023	0,1066		0,0362						-								0,5152				0,1507		0,0158	n 0045	0,0517	
C16	2000 U 0												4 0,0521	2 0,2607				_		_					_		200		0,0621	0,0192		6/T0/0						0,318								0,0658		0,2375	0,1722	-	0,037		0.0123		L
C15												0,1093	0,0464	0,2322		0,0725		20 10				5					į			0,2188		1 0,2188																_			0,125				
C09																			0017/0	0,0400		0,0225					200		0,0124	0,0323 0,0292		0,0104		0,1417														0,2846 0,2119	0,0413	0,0725					0,5575 0,4785
C03					0,1417														+TON'N							0,4785	000				_	//00/0																0,2846	0,0949						0.5575
C01 C02	CUZU/0 COUZ/0	0,1460 0,0025	0,0077															0,2846	rtcn'n							0,5575	į	3	0,2689	0,4914	0,140	0,0937								9	2			_						_					
C01	101010	0,1460	0,0937																								:	¥					0,0954 0,0601 0,0954 0,0349	0,0601 0,0954 0,0601 0,1267 0 0252 0 0252 0 0252 0 0192	CO4 0 1198 0 1198 0 1198 0 1198	0.0239 0.0246 0.0634 0.0254	0,0881 0,0867 0,0168 0,0852	0,0081 0,0087 0,0399 0,0095	1 0,210	C24 0,0172 0,0216 0,0647 0,0216	6 0,0647	0,0019 0,0017 0,0019 0,0017	0,0045 0,0048 0,0045 0,0048	1 0,014	C35 0,0086 0,0084 0,015 0,008	0,0159 0,0139 0,0131 0,0148	1 0,0071	0,024 0,0243 0,0169 0,0241	0,0503 0,0514 0,0103 0,0511	0,0043 0,0044 0,0312 0,0044	C42 0,0117 0,0117 0,0215 0,0112	8 0,0033	C45 0,0043 0,004 0,0072 0,0062 C46 0.0021 0.0021 0.0043 0.002	3 0,022	C50 0,1075 0,1075 0,1075 0,1075
A4				0,0304	0,1106	0.0603	0,0536	0,0258	0,1114	0,0313		0,1355	0,0197	0,0790	0,0183	0,0073	0,0340	0,0132	10000	10000	0,0036	0,0017	0,0129	0,0097	0,0331	0,0565	:	A3				0.001	10,020	0,0954 0,0601	2 0 1195	5 0.0634	7 0,016	7 0,0392	0,2101 0,2101 0,2101 0,2101	5 0,0647	7 0,0216	7 0,0015	3 0,004	4 0,0141	4 0,015	9 0,013.	0,0066 0,0072 0,0231	3 0,016	4 0,010	4 0,031.	7 0,0215	0,0048 0,0054 0,0108	0,0075	1 0,0018	0.1075
A3				0,0833	0,0525	0,0603	0,0536	0,0258	0,1114	0,1657	0,0331	0,0331	0,0823	0,0165	0,0183	0,0387	Then'n	0/TI10		77T0'0	0,0061	0,0037	0,0010	0,0331	0,0331	0,0565 0,0565 0,0331 0,0565	:	A				0.000	4 0,060.	0,095	2 0 1195	0.024	1 0,086	1 0,008	1 0,210	2 0,021	9 0,0647	0,001	5 0,004	1 0,014	6 0,008	9 0,013	6 0,007.	4 0,024	3 0,051	3 0,004	7 0,011	8 0,005	0,00 1 0 002	5 0,022	5 0.107
A2				0,0525	0,0833	0.0603	0,0536	0,0258	0,1114	0,0313	0,0651	0,1355	0,0247	0,0741	0,0183	0,0073	0,0340	0,0132	00000	0.0011	0,0034	0,0018	0,0130	7600,0	0,0331	0,0565	:	A				100 0	10,095		1 0 1195	0.073	3 0,088	1 0,008		1 0,017		1 0,001		4 0,0141	5 0,008				0,050	1 0,004	2 0,011		5 0,0043 5 0.0021	7 0,022(0.107
A1				0,0833 0,0525	CO2 0,0525 0,0833 0,0525 0,1106 CO3 0,0320 0,0330 0,0320 0,0167	0.0603 0.0603 0.0603	C15 0,0536 0,0536 0,0536 0,0536	0,0258	0,1115 0,1114 0,1114	C19 0,0313 0,0313 0,1657 0,0313	0,0651	0,1355	C28 0,0197 0,0247 0,0823 0,0197	0,0790 0,0741 0,0165	0,0183 0,0183 0,0183 0,0183	0,0072 0,0073 0,0387 0,0073	0,0338 0,0340 0,0301 0,0340	0,0124		0,0011 0,0011 0.0011 0.0074 0.0011	0,0034 0,0034 0,0061 0,0036	0,0018 0,0018 0,0037 0,0017	0,0130	0,0097 0,0097 0,0331 0,0097	0,0331 0,0331 0,0331 0,0331	0,0565		L	A1	A2	¥.	₹ 3	3 8	202	i ĉ	600	CI3	C14	C15	C2	C26		C3	C34	ទី	C36	C37	C39	C40	C41	3	8	C45	3 3	<u>।</u>
1	1 2	A3	A4	C01	88		C15	C16		C19		C22	<u>C</u> 3			6	ŝ	5	3	5 5	£	C46	C47	2 8		S																													

P. Aragones-Beltran, J.P. Pastor Ferrando, F. Chaparro-Gonzalez, R. Poveda-Bautista/ Selection of photovoltaic solar power plant projects using ANP

a)

b) Table 6.- Weighted supermatrix: a) 25 ANP, b) 25 DM

25 /	ANP	ANP	DM	ANP CON	/IPLEX					
A4	0.145	0.106	A3	0.144	A3					
A3	0.146	0.133	A4	0.159	A4					
A1	0.288	0.278	A1	0.285	A1					
A2	0.421	0.483	A2	0.412	A2					
C50	0.122	0.145	C01	0.137	C01					
C01	0.116	0.107	C50	0.121	C50					
C40	0.083	0.100	C47	0.075	C40					
C48	0.074	0.091	C40	0.073	C47					
C47	0.071	0.089	C02	0.073	C48					
C02	0.066	0.087	C15	0.069	C02					
C19	0.058	0.060	C39	0.052	C19					
C39	0.049	0.050	C04	0.048	C39					
C22	0.041	0.033	C13	0.035	C30					
C30	0.037	0.033	C36	0.033	C18					
C18	0.037	0.030	0.030	C22						
C49	0.025	0.028	C26	0.029	C43					
C43	0.024	0.026	C37	0.026	C38					
C38	0.021	0.021	C03	0.024	C49					
C34	0.019	0.015	C09	0.019	C37					
C21	0.019	0.015	C42	0.019	C15					
C09	0.019	0.014	C44	0.018	C42					
C15	0.019	0.013	C41	0.017	C21					
C37	0.018	0.013	C24	0.016	C34					
C42	0.016	0.010	C14	0.015	C46					
C16	0.014	0.009	C35	0.015	C03					
C03	0.014	0.007	C34	0.014	C16					
C28	0.013	0.005	C33	0.014	C45					
C46	0.013	0.001	C46	C28						
C45	0.010	0.001	C31	0.013	C09					

Table 5.- Results

	ANP DM	25 ANP
ANP Complex	1.03058	1.00218
ANP DM	-	1.02703

Table 6.- Hadamard's compatibility index

P. Aragones-Beltran, J.P. Pastor Ferrando, F. Chaparro-Gonzalez, R. Poveda-Bautista/ Selection of photovoltaic solar power plant projects using ANP

The prioritization of the alternatives gives similar results in the ANP complex and 25 DM models (compatibility index = 1.002). The elimination of the less influential criteria hardly affects the results in the complex model. Although a change in the position of alternatives A3 and A4 can be observed, the differences in the priorities of these two alternatives are meaningless. In the ANP complex model A3 obtains better results than A4, and in the 25 ANP model both alternatives get similar values.

When comparing alternative prioritization in the ANP DM model and in the other two models, alternative A3 gets better values in the ANP DM model. The compatibility index is acceptable (1.030 in the comparison between the ANP DM model and the ANP complex model, and 0.027 in the comparison between the ANP DM model and the 25 ANP model). Note that the three models show similar results.

As regards criteria weights, similar weight values are obtained in the ANP complex and 25 ANP models. The elimination of the 25 less influential criteria hardly affects these results. However, the comparison of the weights in these two models with the weights of the ANP DM model reveals significant differences, as some criteria change their position in the ranking order.

5. Conclusions

The process of model simplification is not an easy task. Although the elimination of the less influential criteria may seem the easiest procedure for model simplification and in the present case study provides a better compatibility index, this method has the drawback of being based on the selection of the most influential criteria for a particular situation. However, the initial idea was to develop a model of criteria and influences applicable to similar decision problems.

Based on the findings of the present analysis, we recommend asking the DM in each new decision problem about which criteria should be included in or removed from the original model, and using the complex model as a compatibility test for the simplified model. The results suggest that although the compatibility index values are worse when using the criteria selected by the DM, the compatibility index obtained is acceptable. The DM possesses a deep understanding of the problem and therefore his criteria selection includes the most influential factors commonly found in this type of decision problems.

The structure of the clusters was not modified as it had involved asking the DM again about the selected criteria. If, for example, the economic and technical criteria had been unified, the new influences over other elements would have had to be calculated. And this would have involved re-constructing part of the process

The general conclusion that can be drawn from the present study is that in ANP the identification and clustering of criteria is a key step that affects the final results obtained in the process. Therefore, it is essential to perform this step carefully and that the DM applies his knowledge and experience to the identification of the criteria to take into account in the decision problem

6 References

Salas V.. Olias E.(2009). Overview of the photovoltaic technology status and perspective in Spain. *Renewable & Sustainable Energy Reviews 13 (5)*. 1049-1057. Doi: 10.1016/j.rser.2008.03.011.

Saaty. T.L. (2001). Decision making with independence and feedback: The Analytic Network Process. *RWS Publications*: Pittsburgh; 2001.