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ON THE SOLUTION OF A SUPERHIERARCHY WITH A HAYES LOOP 

Bochang Chen: and V.M. Rao Tuminala 
Department of Manufacturing Engineering 

City University of Hong Kong, Kowloon, Hong Kong 

Abstract: In this paper, we discuss the uniqueness condition for the solution of a kind of a 
superhierarchy and establish the necessary and sufficient conditions for a superhierarchy to be 
a Bayes loop. Also, a simple method of finding the solution is introduced. 

1. Introduction 

The problem of a superhierarchy with a Bayes loop was introduced in the literature by Saaty (Sooty, 
1994). This problem considers a network as shown in Figure 1, where L1 = tee 02,..., 9.1 is the state 
space and L 2 = {X1, X2,..., Xm} is the sample space. Let P/ = ((1211)1, (p1)2,—, (Pi)n)T be the importance 
vector of L1 given GI, and P2 = ((P2)1, (P2)2,—, (P2),01- be the importance vector of L2 given G 2. The 
elements of Pi and P2 are all positive (the elements with zero components 'dan be deleted). The inter-
impact between L1 and 1..2 is described by two matrices P12 and P21, respectively, where P12 = ((1312)ij) is 
the column stochastic matrix whose jth column (P12)13, (P12)23  (p12).3) is the importance vector of L1
given x3 of 1,2, and P 21 = ...-211), an i ,j, ..s the column stochastic matrix whose jib column ((1321)ii, (1321)23,—, 

(1321)01" is the importance of L 2 given Eli of LI. Naturally, P 12, P2/ are both non-negative matrices. 

Figure 1: A Superhierarchy with a Bayes Loop 

The supermatrix corresponding to the superhierarchy of Figure 1 is given by 
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L, L2 G1 G2 

L2
= 

'0 
P21 

P12 PI \ 
0 0 P2

G I - 0 0 0 0 

G2 0 0 0 0 

This kind of superhierarchy is used for feedback decision problems appeared in many areas. A decision 
making problem that doctors often face, for example, is how to diagnose the disease of a patient in 
determining a medical treatment plan according to the patient's symptoms. In this problem, the 
diseases cause some symptoms, and the symptoms reflect some diseases; that is, there exists a feedback 
between diseases and symptoms. The structure of these kinds of decision problems can be shown as in 
Figure 2. 

Determining Medical Treatment Plan 

LI: Probable Diseases 

P.21 

PI2 

Alternatives of Medical Treatment Plans 
AlA2/•••/Ak 

L2: The Symptoms Appeare 
§1>S2,•••,Sta 

Figure 2: The Superhierarchy with a Bayes Loop for Medical Decision Problems 

Here, P, = «P1)1, (P1)2,—, 
(p

,)i r is the priority weights vector for the diseases of the patient for whom 
a medical treatment plan will be selected, and P2 =((132)1, (p2)21: -.2 (132)d is the priority weights vector 
for the symptoms of the patient. The inter-impact betWeen LT and L2 is described by two matrices P12
and P21, where the jth column of P12 = (0312Varrn is the priority weights vector of the diseases for a 

—214.1,. , given symptom Si, j = 1,2, ..., m. Similarly, the jth column of the matrix P2/ = (ID / 1 is the priority 
weights vector of the symptoms for a given decease Di, j = I, 2, ..., n. And the jth column of the matrix 
R = (r/i)k,„„ is the priority weights vector of the alternatives of medical treatment plans for a given 
disease DJ, j = I, 2, ..., n. 

Obviously, P/ and P2 are the solutions of the following equation 

P12 b= a and P21 a= b (1) 

for some positive vectors a = (a1, a2,,..., a „)T and b = b2, b ra) T. The decision problem in medical 
diagnosing cases is to find P / and P2 from Eq. (1) given P12 and P21 which are obtained by the doctor 
according to his or her medical knowledge, and then to determine the corresponding medical treatment 
plan. The solution of Eq. (I), however, is not always unique. Consider the following example. 

Example 1: Define 
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Li 

P21 = 

7.8 

.2 

0 

0 

.3 0 0" 

.7 0 0 

0 .6 .3 

0 .4 .7 

and P12 = 

We can find vectors N.,13, a and g as 

a= 

".080" 

.120 

.720 

\ .080J

'.100" 

.100 

.456 

v344i

( .6400 .1600 0 

.3600 .8400 0 

and 'a' = 

o 

0 .9474 .8372 

0 .0526 .1628 

7.160\

.240 

.540 

.060)

such that both satisfy Eq. (1). In fact, for any Xe [0, 1] 

, = 

1.200> 

.200 

.342 

: 258 k I 

7•4\ 0 \ ( .5 \ 0 \ 

.5 0 
a = a 

.6 0 
, b =  A ±(1- A) 

0 .9 0 37 

. ,Oi  0 \ .1) ‘, i v 43 j

constitutes a solution of Eq. (1). 

Besides, in many cases, the solution of Eq. (1) also satisfy 
= (1320.iiai i = 1, 2, ..., n; j = 1, 2, m. 

when we call the inter-impact between L1 and 14 is a Bayes loop. In the diagnostic problem of Figure 
2, for example, (1312)ii(P2)J and (1340(13) are the priority weights of the patient suffering from disease DI
and appearing with symptom respectively, such that• 

(PiDijiP2) = (Poi i=1,2, ...,n;j=1,2,...,m. 

In this paper, we shall first discuss the uniqueness condition of the solution of Eq. (1), then establish 
the necessary and sufficient conditions foi the superhierarchy in Figure 1 to be a Bayes loop. We shall 
also describe a simple method of finding the unique vectors a and I:i that satisfy Eq. (1) of Bayes loop. 

2. The Uniqueness Condition of the Solution of Eq. (1) 

We begin with some definitions. 

Definition 1: The inter-impact between Li and L2 is called a Bayes loop if 
(P121i1P4= (P2dte(p)1 for 1=1, 2, ..., n; j=1, 2, ..., m 

Definition 2: Iffor any fixed ie (1, 2, ..., n) and jell, 2. ....m}. (pn)y>0 implies (p11) 1, >0 and vice 
versa, we call the inter-impact between Li and L2 has Property A. 
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U = 

Because (p1); (1=1, 2, ..., n) and (p2)i (j = 1, 2, ..., m) are all positive, from Definition 1 we see that 
Property A will be satisfied when the inter-impact between L1 and L 2 is a Bayes loop. 

Definition 3: The inter-impact between L1 and L2 is called reducible jfL1 and L2 can be split into two 
non-empty complementary subsets L1 , Lib and L2a, L21,. respectively, such that 

= (P2).fr= 0 for is Lk, and jeL2a, or ieL m and jeL2„ 

Otherwise, the inter-impact between 1.,1 and L 2 is called irreducible. We now state and prove the 
theorem about the uniqueness of the solution of Eq. (1). 
Theorem 1: If the inter-impact between LI and L2 is irreducible with Property A, then there exist two 
unique positive vectors a and b that sat isfr Eq. (I); that is, 

P12 b = a and P23 a = b (1) 

Proof: Eq. (1) can be rewritten as 

(P021 
Let 

( 0 P12 ) 

P 21 ) 
The inter-impact between I.., and L 2 is irreducible implies the matrix U is irreducible. In fact, if U is 
reducible, then U can be partitioned (by permutation) into the form 

(Ai 0.) 

(2) 

B A 2

where Al and A 2 are square matrices. However, B in Eq.(3) must be zero because of Property A. This 
means the inter-impact between Li and L 2 is reducible, which is contrary with the condition of this 
theorem. So U must be irreducible. Then, we prove that 

U2 = (PizPzi 
o 

) 

PriPiz 
is regular, or its diagonal matrices P12P2/ and P2/P /2 are both primitive. Let T (tg) = P12P21. First, the 
diagonal elements of T must be all positive. In fact, there exists at least one positive element in the ith 
column of P21 . Let us denote this element as (p2/)h1. Using Property A, we have 

(3) 

til =E(pion, (1321 )ki "?-(P12)111P21)hi >0
k=1 

Secondly, since the irreducibility of the inter-impact between Ljand L2, for any fixed i, jE (1, 2, ..., n) 
there exists an integer q such that q>0, where tfjq) is the element of . Consequently 

t9+I) = E oot >eut >0 tk kj ij
k=1 

Therefore, Ilju) >0 for any integer u.q. It means that there exists an integer r such that Tr >0, .which 
yields T as primitive (Gantmacher, 1977, Vol.!!, p.80, Theorem 8). Similarly, P P is primitive. The 
primitivity of Pi2-Pzi and PriPumeans that 1! is regular or the cyclicity of U is 2. Thus, any column of 

- 21- 12 

the matrix 
1 14 1 2 1 ( ( 1312P 21r P 12(121P 12r 

= Ern— Euk = —(E+ UXU N-oo N k=i 2 -2U)210312P2ir (1)2JA2 
(4) 
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and 

is identical to any other column (Gantmacher, 1977, Vol.II, p.98). Let a be any column of (P12P20-  and 
b be any column of (P2IP12)- ,respectively. They are both positive and uniquely satisfy Eq. (2) or Eq. 
(I) (Gantmacher, 1977, Vol.II, p.93 and p.98). This completes the proof. 

Since Property A is true for a Bayes loop, we can also obtain the following corollary from Theorem I. 

Corollary 1: If the inter-impact between L1 and L2 is an irreducible Bayes loop, then there exist two 
unique positive vectors a and b that satisfr Eq. (1). 

3. The Equivalent Conditions Between Eq. (1) and Definition 1 

It is easy to see that the solution of Definition I. is a solution of Eq. (1), but the solution of Eq. (1) is not 
always a solution of Definition 1 for arbitrary P12 and P21 with the conditions of Theorem I. When 
would the solution of Eq. (1) be a solution of Definition 1? Or, given P21 and P12, how can we find that 
the inter-impact between L1 and L 2 is a Bayes loop? Theorem 2 answers this question. Also, a simple 
method of finding the solution of Eq. (1) will be introduced. First we introduce two lemmas for 
Theorem 2. 

Lemma 1: When the inter-impact between L1 and L2 is irreducible with Property A, the solution of Eq. 
(I) is a solution of Definition 1 if and only if for coefficient matrices P12 and 1'21. there exist positive 
constants a l, a2  a t, and 131, Pm such that 

a  k0 1 12 )1j(P21 )jk = i0 ) 12 )14 (P 21 

k(P21 ) 0 ) 12 )jk = 1(9  21 )1ci(P 12

for i, k = I, 2  n,- j = I, 2, ..., m (5) 

for k = I, 2,...m; j = I, 2, ..., n (6) 

Proof (Necessity): If the solution of Eq. (1) is a solution of Definition 1, then the positive vectors a — 
(a1, a2, OTY and b = (b1, b2, b.f. satisfy 

(1312)ubj= ( j ai

(P21)ikak = (p12)jib 
and 

for i= 1, 2, ..., n; j = I, 2, ..., m 

fork= I, 2, ...,n; j = I, 2, ...,m 

(7) 

(8) 

Multiplying both sides of Eq.(7) by the corresponding sides of Eq.(8), we have 
a (n (13 k 12 eij NS 21 ejk = ai (PIA.; (P21)JI for i, k = 1, 2, ..., n; j = 1,2.....m (9) 

For the same reason, we also have 
bk (P2t)ii(Pi2)jk= b1(P2i)kj(1312)i1 for i, k= 1, 2, ..., m; j = 1, 2, n (10) 

Thus, the necessity follows. 

(Sufficiency): Assume that there exist positive constants a l, a 2,..., a n and pi, 02,..., Dfil such that Eqs. 
(5) and (6) are true. Summing up Eq.(5) with respect to k, we obtain 

(p,2)i, I (Noikak = (p2oJ1a; 
Summing up Eq.(11) with respect to j, we obtain 

n m 

(I d (P12)i021)jk)CCk = 
kr4 j=1 

Or 

for i= 1, 2, ..., n; j = 1, 2, ..., m 

PaPzia = a 
where a = (a1, a 2,..., ccn) . Similarly, we can obtain 

for i= 1, 2, ..., n 
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P2,131213= R 
where R=6(31,132,-, Pm)

T
• From Eq. (13), it can be seen that 

P21P12P21a = Pzia 

(14) 

(15) 
This means that Pna is also the solution of Eq. (14). From the uniqueness of solution of Eq. (14), we 
obtain 

R=1321a 
or 

0j = t ( P  a k 
kti 

Similarly, we can obtain 

for j = 1, 2, ..., m (16) 

= P12/3
Thus, a and p constitute the solution of Eq. (1). Combining Eqs. (11) and (16), 'we obtain 

(Pail3f = (1321)31a1 for i= I, 2, •..) n;_i =1, 2, m 
This means a and p also satisfy Definition 1. Therefore, the sufficiency follows. 

It is not easy to check the conditions of Lemma I. The following lemma will serve this purpose. 

(17) 

Lemma 2: For non-negative matrices Pj2 and P 21, there exist positive constants a l, a 2,..., a„ and 
13 IL such that 

a ) I k 12 ij w 21 ,  jk Cti(P12 )1Y 0'21 )ji for i, km 1,2 n; j = I, 2, ..., m 
and 

k03 21 4 03,2).rn = (P21 )151(13 12 )ji for i, k = I, 2,...m; j = I, 2, ..., n 
ifand only if the ratios 

(P12)u(P21)jk for 0 on, VP2).11# 0; z, k = 1, 2, ..., n; j = 1, 2, ...,in 
(P 1 2 ) kj (P 2 1 j 

and' 

(P2i)ii(Pu)jk 

(P21)ki(P12)ji 
do not depend on j. 

for (P214(p12).1; 0; I, k = 1,2 m; j = 1, 2, ..., n (19) 

Proof: The necessity is obvious. Now we prove the sufficiency. Suppose 

(1312)ii(P21).9/ co& = for (Piz)k)(1120:0# 0; i, k = 1,2, ..., n; j = 1,2,..., m (20) 
(Pm )ki (P20ii 

Since the ratios 

(1312)u(P20ik 

@IA.; (P21).4 
do not depend on j, we see that 

alik =wit alik for i, k, t = 1,2,..., n 
Therefor, the matrix A = (a)„, ) is consistent and there exist positive constants a 1, a 2,..., a„ such that 
(Saaty, 1990) 

for (pii/ki(P21)ii 0; k 1, 2, ..., n; = I, 2, ...,in 

a. 
= n (21) 

a k 
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From Eqs. (20) and (21) we obtain 

a ; _ (P12)ki(P21)3k 

ak ) (P )12 kj _ 21- ji 
or 

for (1312)ii(P20j:* 0; I, k = 1, 2, ..., n; j = 1, 2, ..., m 

a  k(P12)111(P21)jk = a i (P12)kj(P21)ji for i, k = 1,2,..., n; j = 1, 2, 
Similarly, we can show that there exist positive constants 131, 132,..., Pm such that 

P k(P2i)J13i2)ik = P:(P2I)kj(P12)ii 
Hence the sufficiency follows. 

for i, k = 1, 2,...m; j = 1, 2, ..., n 

Combining Lemmas I and 2, we have the following theorem. 

Theorem 2: When the inter-impact between LI and L2 is irreducible with Property A, the solution of 
'Eq. (I) is a solution of Definition I if and only if for coefficient matrices P12 and Pv. the ratios 

(1,12)ij(P21 3k 
for (pn) ki(p2) ji # 0; k = 1, 2, ..., n; j = I, 2, ..., m 

(P12)kj(P2I)ji 

and 

(P21)13 (P AI( 

(13 21)kj(13 12)31 

I do not depend on j. 

for (P2)111312))i* 0; i, k = 1,2 m; j = I, 2, ..., n 

Corollary 2: The inter-impact between Ll and L2 is a Bayes loop. if and only if for matrices P12 and 
P21. the ratios 

4:112)ii(P20jk 
for (1312hiP2));# k= 1, 2, 12J = 1, 2, m 

(P12)kj(P21)ji 

and 

(P21)ii@12)3k 

(P2i)kj(Piz)ii 
do not depend on j. 

for (p21) 4(p 12)11 # 0; i, k= rn;j = I, 2, n 

Assume that 1,1 = {el, 02,—, en} is the set of states of nature and let L2 = {XI) x21—, x„,} be the sample 
space from which observations are drawn at random. Let P21 = (@21)13) = (p(x119) be the mxn column 
stochastic matrix of likelihoods, let P12 = (4/12),j) = (p(13119) be the nxm column stochastic matrix of 
posterior probabilities, 1°1= ((P)) = (.13(00) be the nxl vector of prior probabilities, and P2 = ((p21) = 
(p(xj)) be the mxl vector of the marginal probabilities of xi. We have 

p(Oilici)p(xj) = p(xilei)p(ei) for i=1, 2.....n; j = I, 2, ..., m 
that is, Definition 1 is satisfied. By Theorem 2, we have the following corollary. 

Corollary 3: The ratios 

p(o i lX )10 ;1190 and p(xi 6l i )p(ojk k

p(9k )p(x3l61) p(xkledP(eilxi) 
do not depend on j. 
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Using Theorem 2, we find a simple method of finding a and b that satisfy Eq. (1) when the conditions 
of Theorem 2 are satisfied. In fact, in this situation there exist positive constants a l, a 2,..., a„ and 01, 
02,..., pm such that 

a i (P12)ii(P21)ik I 

= ior WakikP2v.ii 0; k = I, 2, ..., n; j = 1, 2, ...,m (22) 
a k k..9121ki c..

and 

I3i = 0 ) 211)(P12)jk \ for (1)20k.012);;# 0; k = I, m; j 1, 2, ..., n (23) 
Pk (1) 21)kj(P12)ji 

From the ratios of the right side of Eq. (22) and those of the right side of Eq. (23) we can obtain 
(except a constant factor) al, a2,..., a„ and 13„ 132 ..... 13,,„ respectively. Normalizing them we can obtain 
a and b. Here is an example. 

Example 3: Suppose, in Eq. (I), 

P 12 = 

10A167 

0.2500 

\ 0.3333 

0.5769 0.7143 02273 

01154/ 0.2143 0.6818 

0.3077 0.0714 0.0909 j
and P21= 

( 0.2 0.2 0.4" 

0.3 0.1 0.4 

0.4 0.2 0.1 

0.1 0.5 01/
It is easy to verify that the conditions of Theorem 2 are satisfied. Then, by normalizing the ratios 

a2 (012 )2; (P20. - = 0.6, 
1 a (P12)3.02331  - 0.4 and 

_La 
=1 = ' 3

al (1312 )1i Q 21) 2 al (1)12 )1i @21)j3 al
we obtain al = 0.5, a2 = 03 and a3 = 0.2. Also, by normalizing the ratios 

b @ ) (I) )-2 _  21 23 12 31  
-1.0833, .?-= (P21)34j(P12) j.1 

1.0833, 3  - 1.1667, 
bi (1)201i(P12).n bl (P21)13 (P12 ).j3 

b 4 (P 21 )43 (P12 )j1 b 
- - 0.9167 and

b1 (P21)u(P;2)J4 bi
we obtain b1 = 0.24, b2 = 0.26, b3 = 0.28 and b., = 0.22. Thus the vectors a = (al, a2, a3)T
and b = (61,132,133,134)T form the solution of Eq. (1). 

4. Conclusion 

In this paper, some problems about the solution of a superhierarchy with a Bayes loop are discussed 
and a simple method of finding the solution is introduced. Theorem 2 shows the relationship between 
the likelihoods ((p21).6 ) and the posterior probabilities ((pa )g). It is a supplement to Bayes Theorem. 
The results obtained here can be extended to some more general situations (a superhierarchy with 
several Bayes loops, for example), which can be the topics for further research. 
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