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ABSTRACT 
 
What weight estimation method to choose in the Analytic Hierarchy Process is an important study 
subject, because each local estimate weight value depends on an employed weight estimation method 
and hence the global decision making result of the AHP, which is obtained by integrating estimated 
local weights, is also affected by the employed weight estimation method. The optimality of the 
weight estimation method is defined, and on the basis of this optimality concept, a simulation 
experiment is designed and carried out to statistically find out the optimum weight estimation method 
in the framework of row-wise generalized mean weight estimation with a parameter p. From the 
simulation experimental result, the application guideline for the optimum weight estimation method is 
established, classified according to the magnitude of Consistency Index value, the pattern of estimated 
weight, and the number of comparison items. 
 
Keywords: optimum priority weight, weight estimation method, simulation experiment, generalized 

mean, pairwise comparison 
 
1. Introduction 
Statistical simulation experiment is designed and carried out to find out the optimum weight 
estimation method in the framework of row-wise generalized mean with a parameter p for a pairwise 
comparison matrix of full information in the AHP. Here, the optimum weight estimation method is 
defined as the method of estimating the optimum weight vector, and the optimum weight vector is 
defined in two ways, one as the weight vector which is the closest to the true weight vector, and the 
other as the weight vector which minimizes the logical inconsistency, or the CI value. From the 
simulation experimental result, the guideline for applying the optimum weight estimation method is 
established, classified according to the magnitude of CI value, the pattern of estimated weight vector, 
and the number of comparison items. The obtained guideline indicates that the row-wise geometric 
mean method is generally optimum both in the sense of estimating the true weight and in the sense of 
minimizing the CI value. 
 
2. Related works 
Before explaining our simulation experimental design, we will review two of our former related 
simulation studies ([1] and [2]). 
 
2.1 Miyake’s simulation study[1] 
Assuming the existence of a true weight vector and adding noise (error term) to each element of ideal 
pairwise comparison matrix, a simulation of complete pairwise comparison is run. The relative 
positioning among the true weight vector, the estimated eigenvector, the estimated row-wise 
geometric mean vector, the estimated row-wise arithmetic mean vector, and the estimated row-wise 



harmonic mean vector, is obtained. Depending on the type of noise and the magnitude of noise, the 
estimated weight vector which is the closest to the true weight vector can be guessed from the 
obtained relative positioning result. But in the actual AHP, since the true weight vector is unknown, or 
the noise contained in the measured pairwise comparison data cannot be separated, this simulation 
result cannot teach what weight estimation method is optimum. Here, various error types 
(multiplicative, additive, etc), various error distributions (uniform, normal, lognormal, etc) and 
discretization effect of pairwise judgement value (i.e. quantization noise) are taken into consideration, 
but only four estimated weight vectors (the eigenvector, the row-wise arithmetic mean vector, the 
row-wise geometric mean vector, and the row-wise harmonic mean vector) are considered, and the 
only one pattern of the true weight vector w(*), the increasing pattern, is considered (w(*) = (1, 2, 3, 4, 
5)T). 
 
2.2 Utsugizaki’s simulation study [2] 
In order that the simulation result by Miyake be utilized in choosing the optimum weight estimation 
method in the actual AHP, the relationship between the noise magnitude artificially added in the 
simulation experiment and the measured CI value is investigated via simulation study. The simulation 
study result indicates that the noise magnitude and the CI value are strongly correlated with the 
correlation coefficient around 0.9. From the correspondence between the noise magnitude and the CI 
value, the table for the optimum weight estimation method is constructed. But also in this table, only 
small number of weight estimation methods are considered as in Miyake’s work (geometric, 
arithmetic and harmonic means), and hence the simulation result is summarized so that one of the 
three methods is chosen as the optimum method. Here, the eigenvector is omitted, since the 
eigenvector is shown to be very close to the row-wise geometric mean vector ([1]). 
 
3. Design principle for proposed simulation experiment 
Refining our former simulation experiments ([1] and [2]), an improved version of simulation 
experiment is designed as follows. 
(1) Not only the three weight estimation methods (geometric, arithmetic and harmonic mean), but 

also a wider range of weight estimation methods should be considered for the candidate of the 
optimum weight estimation method by introducing the concept of “generalized mean”. 

(2) For the optimality of the weight estimation method, not only the closeness to the true weight 
vector but also the smallness of logical inconsistency among pairwise comparisons (or 
Consistency Index) should be considered, and the relationship between the two optimality 
concepts be investigated. 

(3) The table or the guideline for the optimum weight estimation method should be classified 
according to the CI value, which is actually measurable in estimating a weight vector by any 
method, not according to the magnitude of noise, which is artificially added in the simulation 
experiment and hence is actually not measurable in estimating a weight vector. 

(4) Various patterns of true weight vectors should be considered, not only the increasing pattern w(*) 
= (1, 2, 3, 4, 5)T , but also the all-equal pattern w(*) = (1, 1, 1, 1, 1)T and others such as w(*) = (1, 
1, 1, 2, 3)T, etc. 

(5) The number of compared items n should be not only 5 but also 10. 
(6) As for the noise artificially added in the simulation, the multiplicative random variable is 

employed. The random variable is assumed to follow the uniform distribution with the 
probability density function [1-σ, 1+σ]. Other distributions should be considered such as 
log-normal distribution. 

 
4. Assumptions and conditions used in the simulation 
In the simulation, we assume the unique existence of a true weight vector and the case of complete- 
information pairwise comparison matrix, and the row-wise generalized mean vector with the 
parameter p is considered as the candidate of the optimum weight vector, which will be explained in 
details. 
 



4.1 Unique truth 
We assume that there exists a unique true weight vector w(*). Fully-consistent pairwise comparison 
matrix W = {wij} with its (i, j)th element wij being given by wi(*)/wj(*), is associated with the true 
weight vector w(*), where wi(*) is the ith element of vector w(*). We also assume that a pairwise 
comparison matrix A = {aij} with its (i, j)th element aij being given by wij × eij, is observed, where eij is 
the multiplicative error term for the (i, j)th element. That is, the matrix A with some noise added at 
each element of W is measured. 
Following multi-truth cases are not treated in this simulation. 
Case 1: Mind is not stable at one point. That is, the person has more than one thought for the true 

vector.  
Case 2: Group of people having different true vectors. 
 
4.2 Complete-information pairwise comparison matrix 
We assume that all the elements of pairwise comparison matrix A = {aij} are measured. It is also 
assumed that aii = 1 (self-identity) and aij・aji = 1 (reciprocity). The case of incomplete-information 
pairwise comparison matrix is not treated in this simulation. 
 
4.3 Row-wise generalized mean vector 
The row-wise generalized mean vector with the parameter p is employed to estimate the weight vector 
from the measured pairwise comparison matrix A. The generalized mean with the parameter p for a 
set of n positive data a = {a1, a2, … , an}, G(p, a), is defined by Eq.(1). 
 

                            (1) 

 
The generalized mean is a generalized idea of the mean, which includes the arithmetic mean, the 
geometric mean, the harmonic mean, and so on. Following properties are known to hold. 
Property 1  (Minimum) 

                            (2) 

Property 2  (Harmonic mean) 

                           (3) 

Property 3  (Geometric mean) 

                           (4) 

Property 4  (Arithmetic mean) 

                              (5) 

Property 5  (Maximum) 
                            (6) 

Property 6  (Increasing with p) 
If p1 < p2 , then                     (7) 

 
This generalized mean with the parameter p is applied to the ith row ai = {ai1, ai2, … , ain} of the 
pairwise comparison matrix A = {aij} to estimate the weight wi of the ith item. 
 



                               (8) 

 
From the properties 1 through 5 and the fact that row-wise geometric mean vector very well 
approximates the right-eigenvector, the application of the generalized mean with the parameter p (or 
the pth-order row-wise generalized mean) is expected to cover a wide range of weight vector 
estimation methods. 
 
5. Optimality of the estimated weight vector 
Given a complete-information pairwise comparison matrix A = {aij}, what estimated weight vector is 
optimum, or what weight vector estimation method is optimum? We will give two definitions for the 
optimality of the estimated weight vector. 
 
5.1 Optimality on the basis of the closeness to the truth 
In an actual process of the AHP, the true weight vector is unknown, but in our simulation experiment 
we assume the unique existence of a true weight vector, such as w(*) = (1, 2, 3, 4, 5)T. Let w(k) be the 
estimated weight vector obtained by applying the weight vector estimation method “k” to a 
complete-information pairwise comparison matrix A = {aij}. Then, we can measure the distance 
between the assumed true weight vector w(*) and w(k) by the qth order distance formula(9). 
 

                   (9) 

 
Here, wi(*) and wi(k) are the ith elements of vectors w(*) and w(k), respectively. The distance defined 
by Eq.(9) is the absolute distance, or called Manhattan distance, for q=1, and is Euclidean distance for 
q=2. 
 
[Definition 5.1]  
Given a sample pairwise comparison matrix A and a set of weight estimation methods, the 
truth-optimum estimated weight vector is defined as that which minimizes the distance to the true 
weight vector, and the truth-optimum weight estimation method is that which estimates the 
truth-optimum weight vector.  □ 
 
[Definition 5.2]  
Given a set of sample pairwise comparison matrixes and a set of weight estimation methods, the 
statistically truth-optimum estimated weight vector is defined as that which minimizes the distance to 
the true weight vector averaged over the set of sample matrixes, and the statistically truth-optimum 
weight estimation method is that which estimates the statistically truth-optimum weight vector.  □ 
 
5.2 Optimality on the basis of minimizing the logical inconsistency 
Let x be an estimated weight vector for a complete-information pairwise comparison matrix A = {aij}, 
then the estimated full-consistent pairwise comparison matrix X = {xij} is constructed with xij = xi/xj, 
where xi is the ith element of vector x, and aij is related to xij by Eq.(10), where εij is called “estimation 
error”. 
 

                                 (10) 
 
Estimation error εij is considered to represent a kind of logical inconsistency in estimating aij. Then, 
we can define an average logical inconsistency measure by Eq.(11). 
 



             (11) 

 
Next, we will derive a generalized CI formula which uses the generalized concept of the right 
principal eigenvalue λmax and can be applied to any weight vector, not confined to the right 
eigenvector. Let x be a weight vector for a pairwise comparison matrix A, not necessarily the right 
principal eigenvector of A, then generally Eq.(12) or Eq.(13) does not hold. It holds when x is a right 
eigenvector of A. 
 

                                   (12) 
    (i=1, … , n)                        (13) 

 
Since the equality for the ith row does not hold in Eq.(12) or Eq.(13) for an arbitrary weight vector x, 
we adjust the value of λ to be λi so as to equalize the left hand side and right hand side values of the 
ith row, as shown by Eq.(14). 
 

     (i=1, … , n)                       (14) 
 
Let λave be the arithmetic mean of λi (i = 1, … , n). 
 

                              (15) 

 
This averaged eigenvalue λave is a generalized concept of right principal eigenvalue λmax. Just as 
Saaty’s Consistency Index = (λmax-1)/(n-1), Consistency Index CIeigen for an arbitrary weight vector x 
is defined by using the arithmetically averaged eigenvalue λave. 
 

                               (16) 

 
Note that this CIeigen is a generalization of Saaty’s Consistency Index. When the weight vector x is the 
right principal eigenvector, CIeigen is equal to Saaty’s Consistency Index. Moreover, this is proved in 
[3] that CIeigen of Eq.(16) is equal to Average Logical Inconsistency of Eq.(11) for any weight vector x, 
which validates the choice of CIeigen defined by Eq.(16) as a measure of Consistency Index. 
 
[Definition 5.3]  
Given a sample pairwise comparison matrix A and a set of weight estimation methods, the 
consistency-optimum estimated weight vector is defined as that which minimizes the logical 
inconsistency, CIeigen of Eq.(16), and the consistency-optimum weight estimation method is that which 
estimates the consistency-optimum weight vector.  □ 
 
[Definition 5.4]  
Given a set of sample pairwise comparison matrixes and a set of weight estimation methods, the 
statistically consistency-optimum estimated weight vector is defined as that which minimizes the 
logical inconsistency, CIeigen of Eq.(16), averaged over the set of sample matrixes, and the statistically 
consistency-optimum weight estimation method is that which gives the statistically 
consistency-optimum weight vector.  □ 
 
5.3 Truthfulness vs logical consistency 
What is the truth (or the reality) in the AHP ([4])? A lot of arguments are still going on about 
assuming a true (or real) weight vector. But we have assumed in Section 4.1 that there exists a unique 



true weight vector w(*), which is given in the simulation experiment but is not known in pairwise 
comparison measurement of the actual AHP. 
Assuming a true weight vector in the simulation experiment may be meaningless for those people who 
think there is no truth. But if there is no truth, any weight vector which is estimated by any method 
can be accepted. How can we compare two weight vectors or more which are induced by different 
methods? Even if the truth is unknown, we think it is necessary to assume the existence of the truth (, 
or the reality). 
For those people who think there are many truths, assuming a unique true weight vector may be also 
meaningless. In such a case, let one of the many truths, which is of present interest, be under 
consideration. Then, our simulation with unique truth assumption can be applied. 
The truthfulness of an estimated weight vector w(k), or the closeness to the truth, is measured by the 
distance formula of Eq.(9). On the other hand, the logical consistency among a set of pairwise 
comparisons can be measured by CIeigen of Eq.(16). 
How these two measures, the truthfulness and the logical consistency, be related? Logically consistent 
arguments result in a truthful result? Logically inconsistent arguments do not result in a truthful 
result? These questions will be answered through the proposed simulation experiment. 
 
6. Simulation experiment 
We propose a simulation procedure which clarifies what estimation method is the most optimum in 
the sense of minimizing the distance to the truth, given a pairwise comparison matrix A and its 
observed CI value, and what estimation method is the most optimum in the sense of minimizing the 
logical inconsistency, given a pairwise comparison matrix A. The steps of the proposed simulation 
experiment will be explained next. 
[Step1] A true weight vector w(*) is assumed to be given, such as by w(*) = (1, 1, 1, 1, 1)T , w(*) = 

(1, 2, 3, 4, 5)T , w(*) = (1, 1, 2, 3, 4)T, etc for n=5, and by w(*) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T, w(*) 
= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)T , w(*) = (1, 1, 1, 1, 1, 2, 3, 4, 5, 6)T , etc for n=10. In the simulation 
run, all the elements in w(*) is normalized so that their sum is 1, such as w(*) = (0.2, 0.2, 0.2, 0.2, 
0.2)T, for w(*) = (1, 1, 1, 1, 1)T, w(*) = (1/15, 2/15, 1/5, 4/15, 1/3)T, for w(*) = (1, 2, 3, 4, 5)T, and 
so on. 

[Step2] The complete-information and full-consistent pairwise comparison matrix W = {wij} is 
constructed from the assumed true weight vector w(*), where wij = wi(*)/wj(*). 

[Step3] An error term eij which obeys a uniform distribution with range [-σ, σ] is generated and a 
sample pairwise comparison matrix A = {aij} is constructed, where aij = wij × eij. Here, eij is the 
multiplicative error term, and it can obey another distribution, such as log-normal distribution, 
etc. Note that the matrix W is fully consistent (or CI = 0), but the matrix A is generally 
inconsistent (or CI > 0), thus human judgment process of pairwise comparison is simulated. 

[Step4] The pth-order row-wise generalized mean is applied to the sample pairwise comparison 
matrix A constructed in Step3 to estimate the weight vector w(p) = (w1(p), w2(p), … , wn(p))T, 
where wi(p) is given by Eq.(17). 

 

     (i=1, … , n)                     (17) 

 
[Step5] Varying the parameter p from -10 to +10 with stepsize 0.1, the distance between w(*) and 

w(p) is calculated by Eq.(18) with q=1 and generalized Consistency Index CIeigen is calculated for 
w(p) by Eq.(19). 

 

                    (18) 

                              (19) 



 
7. Simulation results 
 
7.1 Distance characteristics of individual samples 
The distance characteristics to the true weight vector with the parameter p are shown in Fig.1 for 16 
individual samples. 

 
(a) Sample A 

w(*) = (1, 2, 3, 4, 5) 
σ = 0.1 

(b) Sample B 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.1 

(c) Sample C 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.3 

(d) Sample D 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.3 

 
(e) Sample E 

w(*) = (1, 2, 3, 4, 5) 
σ = 0.5 

(f) Sample F 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.5 

(g) Sample G 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.7 

(h) Sample H 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.9 

 
(i) Sample I 

w(*) = (1, 1, 1, 1, 1) 
σ = 0.2 

(j) Sample J 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.3 

(k) Sample K 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.4 

(l) Sample L 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.4 

 
(m) Sample M 

w(*) = (1, 1, 1, 1, 1) 
σ = 0.5 

(n) Sample N 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.6 

(o) Sample O 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.8 

(p) Sample P 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.9 

Fig. 1  Distance characteristics for 16 samples, where the horizontal axis shows the parameter p and the vertical 
axis shows the distance between the estimate and the truth. 

 
7.2 Frequency distribution of minimum distance achievement 
The frequency distributions of the parameter p which achieves the minimum distance are shown in 
Fig.2 for w(*) = (1, 2, 3, 4, 5)T, where the error magnitude σ is set to be 0.1, 0.2, … , 0.9, and its 
frequency distribution is summarized with σ as the 3rd axis, as shown in Fig.3. The sample size is 
10,000 for all the frequency distributions in Fig.2. 

 
(a)  σ = 0.1 (b)  σ = 0.2 (c)  σ = 0.3 



 
(d)  σ = 0.4 (e)  σ = 0.5 (f)  σ = 0.6 

 
(g)  σ = 0.7 (h)  σ = 0.8 (i)  σ = 0.9 

Fig. 2    Frequency distribution of the minimum distance achievement for various values of error magnitude σ 
with sample size = 10,000 (w(*) = (1, 2, 3, 4, 5)T), where the horizontal axis shows the parameter p and 
the vertical axis shows the frequency of the minimum distance achievement. 

 

 
(a)  w(*) = (1, 2, 3, 4, 5)T (b)  w(*) = (1, 1, 1, 1, 1)T 

 
(c)  w(*) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)T (d)  w(*) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T 

Fig. 3  Frequency distribution of the minimum distance achievement with σ as the 3rd axis 
 
7.3 Frequency distribution of the minimum distance achievement classified by CI ranges 
The data of the frequency distributions in Section 7.2 are rearranged so that the data are classified 
according to CI values, more specifically CI value ranges such as (0.1, 0.2), the range of CI values 
with 0.1 < CI ≤ 0.2. Fig.4 shows the frequency distribution of the parameter p which achieves the 
minimum distance for w(*) = (1, 2, 3, 4, 5)T , where the data are reclassified for thirteen CI ranges, [0, 
0.01], (0.01, 0.02], (0.02, 0.03], … , (0.1, 0.2], (0.2, 0.3], and (0.3, ∞). Fig.5 shows the frequency 
distribution of the minimum distance achievement with CI value as the 3rd axis. 



 
(a)  CI [0, 0.01] (b)  CI [0.01, 0.02] (c)  CI [0.02, 0.03] 

 
(d)  CI [0.03, 0.04] (e)  CI [0.04, 0.05] (f)  CI [0.05, 0.06] 

 
(g)  CI [0.06, 0.07] (h)  CI [0.07, 0.08] (i)  CI [0.08, 0.09] 

 
(j)  CI [0.09, 0.1] (k)  CI [0.1, 0.2] (l)  CI [0.2, 0.3] 

 
(m)  CI [0.3, ∞) 

Fig. 4  Frequency distribution of the minimum distance achievement for various values of CI range 
 

 
(a)  w(*) = (1, 2, 3, 4, 5)T (b)  w(*) = (1, 1, 1, 1, 1)T 

 



 
(c)  w(*) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)T (d)  w(*) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T 

Fig. 5  Frequency distribution of the minimum distance achievement with CI value as the 3rd axis 
 
7.4 CI characteristics of individual samples 
CI value characteristics with the parameter p are shown in Fig.6 for the same 16 individual samples 
listed in Fig.1. 
 

 
(a) Sample A 

w(*) = (1, 2, 3, 4, 5) 
σ = 0.1 

(b) Sample B 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.1 

(c) Sample C 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.3 

(d) Sample D 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.3 

 
(e) Sample E 

w(*) = (1, 2, 3, 4, 5) 
σ = 0.5 

(f) Sample F 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.5 

(g) Sample G 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.7 

(h) Sample H 
w(*) = (1, 2, 3, 4, 5) 
σ = 0.9 

 
(i) Sample I 

w(*) = (1, 1, 1, 1, 1) 
σ = 0.2 

(j) Sample J 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.3 

(k) Sample K 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.4 

(l) Sample L 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.4 

 
(m) Sample M 

w(*) = (1, 1, 1, 1, 1) 
σ = 0.5 

(n) Sample N 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.6 

(o) Sample O 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.8 

(p) Sample P 
w(*) = (1, 1, 1, 1, 1) 
σ = 0.9 

Fig. 6  CI characteristics for the same 16 samples, where the horizontal axis shows the parameter p and the 
vertical axis shows the CI value (CIeigen of Eq.(16)). 

 
7.5 Frequency distribution of the minimum CI achievement 
The frequency distributions of the parameter p which achieves the minimum CI are shown in Fig.7 for 
w(*) = (1, 2, 3, 4, 5)T, where the error magnitude σ is set to be 0.1, … , 0.9, and these frequency 
distributions are summarized with σ as the 3rd axis, as shown in Fig.8. 



 
(a)  σ = 0.1 (b)  σ = 0.2 (c)  σ = 0.3 

 
(d)  σ = 0.4 (e)  σ = 0.5 (f)  σ = 0.6 

 
(g)  σ = 0.7 (h)  σ = 0.8 (i)  σ = 0.9 

Fig. 7  Frequency distribution of the minimum CI achievement for various values of error magnitude σ (w(*) = 
(1, 2, 3, 4, 5)T) 

 

 
(a)  w(*) = (1, 2, 3, 4, 5)T (b)  w(*) = (1, 1, 1, 1, 1)T 

 
(c)  w(*) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)T (d)  w(*) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T 

Fig. 8  Frequency distribution of the minimum CI achievement with σ as the 3rd axis 
 



8. Considerations on simulation results 
(i) The distance characteristic of each sample differs from one sample to another, as shown in Fig.1. 

But most of the distance characteristic curves are V-shaped with one local minimum point. 
Sample F in Fig.1 is an exception, where it has two local minimum points. 

(ii) The frequency distribution characteristics of the minimum distance achievement of Figs.2 and 3 
indicate that when the noise is very small, or the error magnitude σ is around 0.1 or 0.2, the 
minimum distance to the truth is achieved relatively uniformly over a very wide range of the 
parameter value p, regardless of the pattern of the true weight vector, increasing or all-equal type, 
and the number of compared items, n=5 or n=10. More precisely, this tendency is remarkable for 
the case of all-equal pattern. As the error magnitude σ is increased, the minimum distance to the 
truth is achieved more frequently at around the parameter value p = 0 (geometric mean). 

(iii) The frequency distribution characteristics of the minimum distance achievement, classified by CI 
values, of Figs.4 and 5 indicate that when the measured CI value is very small, such as CI < 0.01, 
the minimum distance to the truth is achieved relatively uniformly over a very wide range of the 
parameter value p, or the parameter value p which yields the minimum distance is uniformly 
distributed over a very wide range of CI values. More precisely, this tendency is remarkable for 
the case of all-equal pattern. From another viewpoint, the distance characteristic when the CI 
value (or the error magnitude σ) is very very small (or zero), the distance characteristic curve is 
expected to be flat with zero distance for any parameter value p. On the contrary, as the CI value, 
measured by any weight estimation method with CIeigen of Eq.(16), is increased, the minimum 
distance to the truth is achieve more frequently at around the parameter value p = 0 (geometric 
mean). The kurtosis (or the sharpness of the peak) of the frequency distribution at p = 0 also 
increases with CI value. 

(iv) Comparing Fig.2 and Fig.4, we can observe that the sharpness of the peak for the histograms of 
Fig.4 is stronger than that of Fig.2. This indicates that the index of measurable CI value is more 
sensitive in choosing the optimum weight estimation method than the index of unmeasurable 
error magnitude. 

(v) The CI characteristic of each sample differs from one sample to another, as shown in Fig.7. But 
their differences are small compared to those of the distance characteristic of Fig.1. Note that the 
minimum CI is achieved at p = 0 for all the 16 samples. 

(vi) The frequency distribution characteristics of the minimum CI achievement of Figs.7 and 8 
indicate that when the error magnitude σ is small, the minimum CI is achieved 100% at the 
parameter value p = 0 (geometric mean), regardless of the pattern of the true weight vector, 
increasing or all-equal type, and the number of compared items, n=5 or n=10. Although this 
tendency is strongly maintained as the error magnitude σ is increased, some small number of 
samples which achieve the minimum CI other than at p = 0 can be observed when σ > 0.5. 

(vii) The frequency distribution characteristics of the minimum CI achievement of Figs.7 and 8 are 
sharp compared to those of the minimum distance achievement of Figs.2-5. This indicates that 
most of the truthful estimate weights do not necessarily yield the minimum CI. 

 
9. Conclusion 
A simulation experiment is designed and carried out to find out the optimum method of weight 
estimation from the two optimality viewpoints, the truthfulness of estimated weight vector and the 
logical consistency of estimated weight vector. 
When measured CI value is very small, less than 0.01, a wide range of row-wise generalized mean 
with any parameter value p can estimate a near-optimum weight vector in the sense of minimizing the 
distance to the truth, especially for the case where estimated weight vector is of all-equal type. As 
measured CI value is increased, the probability that the row-wise geometric mean (p = 0) estimates 
the optimum weight vector is increased. When CI value is very small, since any generalized mean 
method with any p estimates a near-optimum weight vector, the geometric mean method also 
estimates a near-optimum weight vector. From the viewpoint of estimating truthful weight vector it is 
summarized that, the row-wise geometric mean method (p = 0) statistically yields an optimum, or 
even near-optimum, weight vector, over a wide range of CI values. Moreover, the row-wise geometric 



mean method (p = 0), with very high probability, minimizes the logical inconsistency, or maximizes 
the logical consistency. 
Since it is known that the eigenvector weight and the row-wise geometric mean weight very well 
approximate each other (for example see [1]), it is concluded that the row-wise geometric mean 
method, or namely, the right eigenvector method, is statistically optimum from the viewpoints of both 
the truthfulness (Definition 5.2) and the logical consistency (Definition 5.4). 
Using available measured information, such as CI value, what weight estimation method to choose, 
not statistically, but corresponding to each individual sample (Definition 5.1 and Definition 5.3), still 
remains a problem. The relationship between the individual distance characteristic of Fig.1 and the 
individual CI characteristic of Fig.6, and the extension of our proposed approach to the 
incomplete-information of comparison matrix, are also future research subjects. 
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