
USING TRACKING COLUMNS TO IMPROVE OPTIMIZATION WITH A
GENETIC ALGORITHM

Gavin T. Byrnes
Decision Lens, Inc.
Arlington, VA USA

E-mail: gbyrnes@decisionlens.com

Abstract

It has been established that a genetic algorithm can be used in linear programming to
optimize within an AHP framework. This optimization process frequently reveals a bias towards
cheap projects (even if they are poor-performing), which hurts its value in practice. Tracking
columns and multiple pools are two methods of combating this bias. Tracking columns allow for
more control over optimization by adding or removing constraints on the number of alternatives
funded overall, from different groups, or to require certain additional thresholds for more
realism. Multiple pools can be used to earmark resources for specific types of projects, allowing
for a more balanced portfolio.

Keywords: genetic algorithm, linear programming, tracking columns, optimization

1. Introduction

AHP models can be used in budget allocation to construct value scores which are then
optimized into a portfolio constrained by the resources available using a genetic algorithm based
on concepts of linear programming. The alternatives are assigned rating scores developed
through a typical AHP process involving prioritization of relevant criteria and creating rating
scales for these criteria on which the alternatives are evaluated. The genetic algorithm then
maximizes the total value attainable using the given funding structure. This approach is
hampered in real-world value by a frequent bias towards cheaper and less effective projects; this
paper presents an example of this bias, along with analysis of a few potential solutions.

The model used was created for use in water management by a department of public
utilities. Names of projects and some other identifying details have been changed. The purpose
of the model was to first evaluate projects in an AHP model and then maximize portfolio score
based on the costs and values of the projects and the available money.

2. Literature Review
The AHP model and genetic algorithm in this paper come from the software of Decision

Lens, Inc., which implements Thomas Saaty’s AHP in a web and desktop-based platform which
includes a genetic algorithm for resource allocation.

The optimization problem at hand is a linear programming problem; given alternatives
with value scores and costs, and a budget of resources, maximize the total sum of value that can
be achieved using the resources to fund the alternatives. This type of multivariate linear
programming problem is common in literature in the past several decades.

The genetic algorithm used is described in papers by William Adams; it constructs seeds
of potential portfolios and navigates through potential viable solutions to a linear programming
problem, “turning” alternatives on and off by determining whether or not they are funded, and
gradually constructing an optimal or near-optimal portfolio.

Most optimization processes built using this type of genetic algorithm have a bias toward
cheap projects during optimization. This occurs because the linear construction of portfolio value
means that portfolio value is additive. Since value in the Decision Lens framework of AHP is
constrained to a 0 to 1 scale, there is usually a wider spread of costs than value scores, so a cost-
benefit analysis favors projects with lower costs even if they have lower scores.

3. Hypotheses/Objectives

This paper aims to describe the process of linear optimization using genetic algorithms,
allowing for tracking column constraints, logical constraints, and pool constraints. It will
demonstrate the hypothesis that pure linear optimization favors cheap projects over expensive
ones (even if the expensive projects are better) and present and analyze some methods of
addressing this bias.

4. Research Design/Methodology

The model used is an AHP model with 56 alternatives and two or more pools, depending
on the optimization scenario. It is based on a real-world model used by a department of public
utilities; the alternative names have been changed and some of the criteria have been modified to
protect the security of the original data. The costs of the alternatives range from very cheap
projects in the $100K range to expensive ones $50M and higher. The basic model is broken into
two pools, referred to as C Pool and D Pool (not their real names). C Pool contains 50% of the
sum of the costs of projects in C Pool; D Pool contains the same percentage for its projects. In
some of the scenarios created to combat bias toward cheap projects, the pools are broken down
further by cost (0-$1M, $1M-$10M, and $10+M), in all cases with the pool containing 50% of
the funds needed.

Some of the scenarios also contain tracking columns, defined as a metric that is neither an
AHP criterion nor a cost but nevertheless affects the optimization. In this case, we track
alternatives based on three categories (high cost, medium cost, and low cost) and may have
upper or lower bounds on how many in each category can be funded.

The following table shows the projects funded by cost and value by regular linear
optimization using a genetic algorithm, where low-cost refers to projects costing $0-3M, medium
is $3-15M, high cost is $15-100M, and projects are grouped by value into approximately the top
third, middle third, and lower third.

Of Projects Funded by Cost and Value

Total (Cost) Total (Value) Funded (Cost) Funded (Value)
Low (Cost/Value) 17 18 17 17
Med (Cost/Value) 23 19 23 18
High (Cost/Value) 16 19 8 13

Regular optimization results for this model do not adequately serve to inform a real life
situation. Only eight projects are not funded; six of these are in the upper third by value! All the
cheap projects are funded, including some with very low scores. In the real world, funding a vast
number of bad projects is rarely preferable to funding a smaller number of good projects. To
combat this issue we turn to analysis of tracking columns and pool breakdowns.

5. Data/Model Analysis
There are several ways to use tracking columns to constrain the results to better match reality.

I. Limit the number of projects funded in total
II. Require quotas of projects by value or cost
III. Create different funding pools for large/medium/small projects

I. Limit the number of projects funded in total

In addition to overvaluing cheap projects, the original method of optimization also does not
take into account questions of the efficiency of pursuing so many projects. One way to use
tracking columns is quite simple; assign a value of “1 project” to each project and use that
tracking column to limit the number of projects. This is also likely to give a more realistic
and diverse portfolio, with a smaller number of projects and a better balance between larger
and smaller projects. Running the same optimization but with a requirement that no more
than 25 projects be funded gives the following breakdown by value/cost:

Of Projects Funded by Cost and Value

Total (Cost) Total (Value) Funded (Cost) Funded (Value)
Low (Cost/Value) 17 18 6 1

Med (Cost/Value) 23 19 11 9
High (Cost/Value) 16 19 8 15

The portfolio value is superficially lower, but two more high-value projects can be funded
than before and there are significantly fewer real-life resources and overhead being used on
low value projects. The requirement for number of projects funded is not set in stone, of
course; if using the tracking column cuts the portfolio too far down the other way, we could
allow a higher number of projects to be funded, in this case 30 or 35, keeping some of the
high-value projects we’ve gained while adding a few low or medium cost projects back into
the portfolio.

II. Require quotas of projects by value or cost

Another way to use tracking columns is to make the low/medium/high distinction explicit in
the model and demand that the portfolio meet certain requirements with respect to these (e.g.,
fund no more than five low cost projects, or must fund the five highest-scoring projects.)
This is often a better simulation of real life scenarios in which diversity across portfolio is
highly valued or some projects are required to be funded in all cases. The following table is
the funding breakdown in the scenario in which a) no more than five low-cost projects can be
funded and b) the five highest-scoring projects must be funded.

Of Projects Funded by Cost and Value

Total (Cost) Total (Value) Funded (Cost) Funded (Value)
Low (Cost/Value) 17 18 5 6
Med (Cost/Value) 23 19 22 16
High (Cost/Value) 16 19 9 14

More projects can get funded in this scenario than in scenario I; losing one high-value project
allows the funding of many more medium range projects while still funding more top
projects than the original optimization. Very few bad projects are funded.

III. Create different funding pools for small/medium/large projects

A way to adjust optimization without using tracking columns is by breaking the money down
further by pool, earmarking amounts of money specifically for different groups of projects,
whether by value, cost, or another piece of data. In this model, we can break the projects into
the low, medium, and high cost brackets and then, as before, assign 50% of the requested
funding to the respective budgets.

Of Projects Funded by Cost and Value

Total (Cost) Total (Value) Funded (Cost) Funded (Value)
Low (Cost/Value) 17 18 11 9

Med (Cost/Value) 23 19 15 16
High (Cost/Value) 16 19 12 13

With a lot of money in the high-cost alternatives pool, this scenario funds the most large
expensive projects with an overall portfolio similar to scenario II. This situation can also be
easily adjusted to allow more or fewer projects of any type by moving the budget around
between the different cost pools.

6. Limitations

None of these methods actually address the bias of the optimizer; they only override it to force it
to behave in a more real-world fashion, and the results are necessarily somewhat arbitrary. If we
make sure the optimizer funds three large projects, it will fund three large projects at a “cost” to
the perceived portfolio value; we don’t yet have a way to make the actual portfolio value
calculation reflect reality in a more effective manner. Tracking columns and the use of pools
allow us to massage the data in specific useful ways, but do not provide a universally
generalizable solution.

7. Conclusions

The AHP lends itself well to linear optimization with a genetic algorithm, but there are
elements of that approach that are suboptimal in real life situations because of a bias in favor of
small poor-performing cheap projects. Using tracking columns and size-based pools introduces a
greater form of control over the optimization by allowing us to fund more top performing
projects, reduce the number of overall projects funded, or allocate resources more precisely to
ensure a balanced portfolio. All of these methods help make the genetic algorithmic approach
more viable in real life situations; however, they require a sophisticated knowledge of each
individual problem on a case-by-case basis and are not easily applied universally. Further
research in this area could focus on nonlinear methods of constructing portfolio value and other
ways of calculating cost/benefit ratios.

8. Key References
List here only those 3 to 5 references that are key for the study at hand.
Adams, W.J. (2012). Genetic Algorithm Description. Arlington, VA. Decision Lens, Inc.

Adams, W.J. and Laughlin, Sean. (2006). Decision Lens Suite Help Documentation. Arlington,
VA. Decision Lens, Inc.

Saaty, Thomas (2009). Principia Mathematica Decemendi: Mathematical Principles of Decision
Making. Pittsburgh, PA. RWS Publications.

