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1.- Introduction 
The relevance of evaluating how close a vector is to any other, is a crucial issue in metric topology 

consideration and patterns behavior. The question of how to measure the distance / compatibility and the 
definition of an applicable threshold are the key factors to establish when vectors are close and when they 
are not.   

In decision making environment, this question is also valid, even if the evaluation process 
becomes  quite different, since the order topology, (used in decision making), differs considerably from 
the idea of closeness in metric topology used in engineering and physics. We have to consider that we are 
dealing with priority vectors, which means that we are inside a weighted environment or, a weighted 
space.  In this non isotropic space, the coordinates numbers are not equivalent to each other this mean that 
the directions are not equivalent. The coordinates are not just numbers, they represent preferences, so they 
do impact distance calculation.  

One have to ask what is better, to be close to a big coordinate number (representing a high priority) 
or to a small one?. A possible geometric explanation of this issue is showed in figure 1, First we have a 
flat space where the coordinate to assess the compatibility among the two persons are reflected by 
Vectors 1 and 2, and calculated the distance (as a similitude of closeness or compatibility among them. 
Then, a big coordinate value (heavy weight) appear changing the space geometry, this event reshape the 
space and make the measure of closeness also change; in consequence, what is considered close (or far) in 
a normal space may not be close (or far) in a weighted one. Even more, this reshaping effect in extreme 
situations may produce a singularity,  the last happen when the ratio among the vector priorities (the 
coordinates), is high. 

This basic but crucial difference with the normal Cartesian space, where all coordinates and 
directions are equivalent “equal weighted”, forces us to review the way that we are measuring closeness 
and therefore, we need to reevaluate the way that we are calculating the compatibility index among 
priority vectors. A proposal for a new compatibility index that avoids the singularity effects in weighted 
environment is introduced. 
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Figure 1: Geometric representation of  the compatibility index measurement under weighted environment 
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Looking to figure 1, one might assign the structure of the decision (some AHP or ANP decision model) to 
the geometry of the decision space we are creating, the alternatives the matter that has to obey and follow 
those geometry, but at the same time telling to the structure how to reshape, or in other words how it has 
to crisp or curl due to the decision’s judgments and the forthcoming synthesis.  

The next logical step, is try to build a new compatibility index that take into account the explained 
situation and then prove numerically how it work. To do this, we have established a step by step process 
that allow to approximate to the final formula comparing the output results and their sensitive to extreme 
situations (singularity). 

2.- Step by Step, the Building Process for a new Compatibility Index 

There are different ways and formulas to evaluate the compatibility between two vectors, for example: 
 

o Hilbert formula (Hilbert´s index)  D(A, B) = Log {Maxi(ai/bi) /Mini(ai/bi)} 
o Inner vector product (IVP)  D(A, B) = {A}°{B} /n = (Σi ai x 1/bi ) /n 
o Weighted inner vector product (WIVP) D(A,B) = {A} {B} {W} = Σi (ai x 1/bi  x wi) 
o Hadamard product (Saaty`s Index) D(A, B) = [A]°[B]t /n2  = [ΣιΣj aij x 1/bij] /n2 

 
Most of them work well in a unweighted environment, or in a “soft” weighted environment, which mean 
a relative flat geometry. But, when the weights are different, then the solution might be altered, and if the 
difference are big enough ( big ratio for one or more coordinates of the vectors), then a singularity appear. 
 
This paper present a way to overcome this situation and make possible to evaluate compatibility among 
any pair of vectors taking in consideration that we are dealing with weighted environments. The natural 
notion used here is: “It is more relevant to be close to the heavy coordinates than the lights one”. So, they 
weights do care. But, observing the formulas none of them use explicitly the weights as data to evaluate 
the distance between vectors A and B (D(A, B)). 
 
To introduce this new index in a more clear way, the construction process was divided in 3 main steps: 
 

o First step:  
 The inner vector product (inverted). 

o Second Step:  
  The weighted  inner vector product.  

o Third Step: 
  The Min-Max weighted inner vector product and its generalization using the 

gravity center principle. 
 

First step: The inner vector product (inverted) 
The ideas in the first step are two, one to show how to produce an inner product that can be useful for the 
calculation of the compatibility (or incompatibility) index.  The second idea is to establish what should be 
the inferior and superior bonder of that index. 
 
If we take the inner vector product of two equal vectors, inverting the coordinates of the second vector 
and then divide by n (the vector dimension) then we get back with the unit. In General:  
AºB*/n = (Σ ai*1/bi)/n (1) 
 
If A=B (complete flat geometry) then, 
A={0.5; 0.5} 
B={0.5; 0.5}  B*={1/0.5; 1/0.5}   
AºB*/n = (Ratio1 + Ratio2)/n  = (1+1)/2 = 1  
That mean: 100% of compatibility or 1-1 = 0% of incompatibility 
 
By the other side, if we use another A, B vectors where we produce a strongly weighted space or crisp 
geometry, like  
A={0.10 ; 0.90} 
B={0.90 ; 0.10} 
Please, note that A, B are both homogeneous priority vectors (their coordinate ratios are less than one 
order of magnitude) and more relevant for this step they are almost perpendicular vectors.  
 



Applying the formula: 
AºB*/n = (Ratio1 + Ratio2)/n = (0.1/0.9 + 0.9/0.1}/2 = 4.555 which is far from one, and that is right, 
(they are unlike vectors) but, they are “too” far, this is up of the 100% of unlike. 
4.555, means 4.555-1=355.6% of incompatibility and this value has no sense, (or at least a hard physical 
interpretation). 
Two equal vectors (like the first situation), has to be 100% close and one can not have a value over 100% 
(two vectors can not be more close than be the same vector). In the inverse way, if one think in terms of 
incompatibility instead of compatibility, you can not get an incompatibility over 100%, two vectors can 
not be more separate than having no projection one over the other (perpendicularity vectors condition). 
Hence, any number over 100% bond is a non sense value for incompatibility. 
 
Graphically (figure 2): 

Angle =0º  0% of Incompatibility. 
Total projection (Total Compatibility) 

Angle=90º  100% of Incompatibility. 
No projection (Total Incompatibility) 

 
Figure 2 

 
 

Second Step:  The weighted  inner vector product  
The vector shall be weighted before to evaluate his index, since the coordinates are weights (they are not 
just numbers), so its important to capture in what coordinate the vector is being close or far. But, in this 
case, as the vectors are being weighted, then became necessary to take off the “n” value from  the 
equation (due to the weighting process the n value is not required anymore), and that is very good thing, 
because the n value is just an “average weight” which could be very wrong if the coordinates of the vector 
(the weights) came apart from each other. By the way, this is the main reason that may appear the 
“singularity effect”, caused by extreme differences in the weights value. 
 
Applying this weighting concept in (1) : 
Weighted AºB= Ratio1*w1+Ratio2*w2=(0.1/0.9)*0.1+(0.9/0.1)*0.9= 8.111 
8.11, means 8.11-1=711.1% of incompatibility. Also this value has no sense and in certain way is still 
worse than the one obtained from the “clean” dot product got it in the first step.  
But, if you look the big picture this is a very logical result, since if you weight the wrong ratios, you can 
get still worse results. (making worse what is already bad). 
 
So, what is happening?  
The main issue here is not only in the weighting process (which of course is totally necessary), what real 
matter here is the vectors projections. It is necessary to establish the correct projections between the 
vectors before to build the ratios and weight anything. Establish the right projections will allow to 
establish the right ratios and then (and only then) weighting it in the correct way. 
 
In order to find the right projections we can use the other way of  represent the dot product (the geometric 
representation of dot product). AºB = ABcosine(<(AB)). 
Considering that we always work in the first quadrant, (the coordinate numbers will be always positive by 
definition), then the angle will always lays between 0 – 90º. 
If  it is 0º we have full projection, represented by the same parallel vector, (getting total compatibility), 
and if its 90º we have no projection, getting total incompatibility. (As showed it in figure 1). 
So, the bottom question here is how to capture the projections among vectors A and B. 
 
Considering also that the norm of the vectors A and B are equal to one (they are normalized vectors), then 
is possible to write directly: AºB = cosine(<(AB)) 
So, now the question is how to establish the projection (the cosine function) in terms of the coordinates of 
the vectors and then (and only then) weighting them. 
 
 



Third Step: The Min-Max weighted inner vector product and its generalization using the gravity center 
principle: 
 
This third step is divided into two sub-steps. The first one (3.1) is about the Min-Max weighted inner 
vector particular solution. The second one (3.2) is the Min-Max general solution using the gravity center 
principle. 
 
3.1.- The Min-Max Weighted inner vector product. 
 
As we saw in the second step, the main question is about the projections of the vectors which can be 
captured by the cosine function. 
The definition of the cosine function is: adjacent side /hypotenuse = shorter side /larger side. 
In the figure 3, we can see its geometric interpretation. 
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Figure 3 Cosine projection 

 
Cosine αi= bi/ai ; which represent the projection of A over B in that axis. 
 
The cosine function is bonded between 0-1 so, we always got that the ratio among the coordinates vectors 
must be less-equal one. One way to reproduce this behavior is selecting the coordinates in a way that 
always have in the numerator the smallest coordinate and in the denominator the bigger one. 
It is possible to represent this using the Min and Max functions like this: 
 
Min{a1; b1}= Min{0.1; 0.9}= 0.1 
Max{a1; b1}= Max {0.1; 0.9}= 0.9 
Min / Max = 0.1 / 0.9 = 0.1111 (this is the right ratio R1 that has to be weighted). 
In the same way for coordinate 2: 
Min{a2; b2}= Min{0.9; 0.1}= 0.1 
Max{a2; b2}= Max {0.9; 0.1}= 0.9 
Min / Max = 0.1 / 0.9 = 0.1111 (this is the right ratio R2 that has to be weighted). 
 
So, now we are able to weight both coordinates since we already have the right ratios, (given by the Min- 
Max function that is reproducing the cosine projection calculation): 
 
Weighted AºB= Ratio1*w1+Ratio2*w2= (0.111)*0.1+(0.111)*0.9= 0.111. 
 
Now, we can say that the compatibility is: 11.1% or the incompatibility is: 
100% - 11.1%= 88.9%. Which represent (as expected),  a very incompatible vectors but, with a value less 
than 100%. 
 
Of course, to complete the process, is necessary to weight the projections in both ways (A over B and B 
over A), and take the average of both results. But that is just the same concept repeated. 
 
Hence, the final formula take the form: 

D(A,B) = [Σi Mini (ai,bi) /Maxi (ai,bi ) * ai + Σi Mini (ai,bi) /Maxi (ai,bi ) * bi] /2. (2) 
 
We can also write (2) in its condensed form as:  

D(A,B) = [Σi (Mini (ai,bi) /Maxi (ai,bi )) * (ai + bi)/2]  (3) 
 

Readable as: point to point, add the arithmetic average of the i-coordinate weighted by its projection. 
 
Let try it for different cases in a 2-Dimension couple of vectors (fig 4): 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Different cases of Min/Max Index (Sensibility) 
 
 

From results of figure 4, the Min-Max formula, is the only one that keep stable the tendency to “lowing” 
the incompatibility value as we change the coordinate values (as expected to be). 
 
This is because the Min-Max formula is the only one that take into account two crucial issues: 
1.- the weights of the coordinates  
2.- the projection of the vectors.  
 
This good behavior include also a logical and acceptable bounding condition situation, that is a range for 
incompatibility index starting from 0%, (total compatibility or parallel vector situation) to 100% (total 
incompatibility or perpendicular vector situation).  
Incompatibility Index lays between [0% - 100%], no matter what coordinates value, or vector dimension 
one is dealing. 
Dem: 
Σi a i = 1, Σi b i = 1  Σi (a i +b i)/2 = 1 
(Min/Max) i .LE.1 for every i   Σi (Min/Max) i x (a i +b i)/2 .LE. 1 (100%) 
 
Its possible to test the formula in different situations (normal or extreme), and one should get close results 
to Hadamard or Hilbert formulas if the coordinates are more or less equal among them (homogeneous 
coordinates). But, as you start to make differences for the coordinates values, or the coordinates between 
the vectors are very different (ai<>bi), even if they are homogeneous among themselves, then the issues of 
weight and projection will became more and more relevant, making important differences in the index 
final value (the singularity effect).  In fact, the index value of incompatibility for the initial coordinates of 
A, B using Hadamard operator is equal to: 1,975.3% >> 100%, which is not a interpretable value. This is 
an interesting result, since prove that is not the homogeneity the main issue here, in fact, the vectors A 
and B are homogeneous but, the weights that are in play and the vector projections, are making the real 
difference to the final index value calculation. If those effects are not taking into account then, the results 
may yield out of the 0 – 100% bonds, which is not an expected result.   
 
Is important to point out that the Min-Max formula also represent a real possibility to define a stable 
index threshold, which would be around 10% for any condition of coordinates or vector dimension. This 
threshold if tested for similar couple of vectors return with values less or equal 10% for Hilbert and Min-
Max formulas and less or equal 1% for Hadamard and inner vector product, showing that in normal 
conditions, (no singularity present) the 10% is a good threshold value and still more important, for the 
Min-Max formula this threshold value stay unaltered even in presence of  singularities (strong weighted 
space). 
 
As a last example, we will show a simple application of  the compatibility calculation, first over a not 
homogeneous set  and then make it homogeneous deleting the alternative with the smallest weight. 
 
Next in figures 5 and 6, is show a comparison matrix of energy consumption objects: 
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Elec.Range 1 2 5 8 7 9 9 .393 .392 
Refrig. 1/2 1 4 5 5 7 9 .261 .242 
TV 1/5 1/4 1 2 5 6 8 .131 .167 
Dishwash. 1/8 1/5 1/2 1 4 9 9 .110 .120 
Iron 1/7 1/5 1/5 1/4 1 5 9 .061 .047 
Hair-dryer 1/9 1/7 1/6 1/9 1/5 1 5 .028 .028 
Radio 1/9 1/9 1/8 1/9 1/9 1/5 1 .016 .003 

Figure 5: Comparison Matrix for Electricity Annual Consumption 
 
Hadamard Incompatibility Index = 45.5% (Compatibility of 54.5%) 
Min-Max Incompatibility Index = 8.2% (Compatibility of 91.8%) 
 
If we now delete the Radio alternative, since is the alternative that produce the bigger loss of 
homogeneity (0.393 is 24.6 times greater than 0.016). 
 
Then: 
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Elec.Range 1 2 5 8 7 9 9 .393 .392 
Refrig. 1/2 1 4 5 5 7 9 .261 .242 
TV 1/5 1/4 1 2 5 6 8 .131 .167 
Dishwash. 1/8 1/5 1/2 1 4 9 9 .110 .120 
Iron 1/7 1/5 1/5 1/4 1 5 9 .061 .047 
Hair-dryer 1/9 1/7 1/6 1/9 1/5 1 5 .028 .028 

Figure 6: Comparison Matrix Without Radio Alternative 
 
Renormalizing: 
 

0.399 0.265 0.133 0.112 0.062 0.028
0.393 0.243 0.168 0.120 0.047 0.028

     8.08% Incompatibility with min-max    
2.40% Incompatibility with hadamard    

 
 
The output shows that Incompatibility evaluated with Hadamard formula is 2.4%, representing a change 
in a large 94.7% over the 45.5% initial value. For a weighting way of thinking, this is a unexpected 
changing in the compatibility index value, considering that we are deleting an irrelevant alternative with 
only a 1.6% of the total weight. 
By the other hands we have that the Incompatibility index using Min-Max formula is 8.08% 
(compatibility of 91.9%) which represent a little change of only 1% over the initial value (8.2%), which is 
an expected changing value. 
 
This example shows clearly that the homogeneity should not be an issue for compatibility (as it is for 
consistency indeed). Since compatibility have to deal with reality and the reality doesn’t need to be 
homogeneous. The radio exist and has to be considered in the final set of alternatives. 
 



Homogeneity is necessary to reach a good consistency in the matrix comparisons, this could be done 
clustering the alternatives in two homogeneous sets, duplicating one alternative (for example the iron 
alternative) and use it as a pivot.  
 
 
Conclusions 
 
A big analogy can be made over this study of compatibility (as showed in figure 1 & 7). We can establish 
that the AHP or ANP model without the alternatives (the decision structure), represent the geometry of 
the decision space we are creating. Each criterion and weight represent a curl or a change in the slope of 
this space (bigger the weight, bigger the slope). So, any change we make over this space geometry (the 
model), must be reflected by the compatibility index value, in order to preserve an index that really can 
measure the compatibility in this two different structures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Model representation for weighted compatibility index assessment 
 
 
Next in figure 8, is show a table where is clearly synthesized what is considered and what not for the 
different knew indexes. Of course, each of this four criteria checked ok, represent a better behavior for the 
corresponding index. 
 

INDEX SYMMETRY WEIGHTS PROJECTION BOUNDARY [0-100]
HILBER check OK not check not check not check 

STANDARD IVP not check not check not check not check 
WEIGHTED IVP not check check OK not check not check 

HADAMARD check OK not check not check not check 
MIN-MAX.CG check OK check OK check OK check OK 

Figure 8: Comparison table for different Compatibility index calculation 
Where: 
Symmetry = this condition is related to get the same index value independently of what vector we use 

as starting point when calculate the compatibility index. 
Weights = this condition is checking if the index calculation formula is considering the weights of 

the model in an explicit way (avoiding cancellations).  
Projection = this condition is checking if the index calculation formula is considering the changing  

projections (point to point), among the vectors. 
Boundary = this condition is checking if the final index value belong to a bounded scale [0 – 100]%. 

(If it is bounded, then is possible to build a significant threshold inside the scale). 
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The final conclusion of this paper is to show a new formula able to assess the compatibility index  in a 
weighted environment, for any dimensional vector (small or large) no matter if its homogeneous or not, 
presenting also a reliable threshold value that rest the same for any situation, no matter the dimension of 
the vectors or if it is present any singularity.   
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